Results 161 to 170 of about 510,394 (371)
Design and control of warehouse order picking: A literature review
R. Koster, Tho Le-Duc, K. J. Roodbergen
semanticscholar +1 more source
Functional Responses of the Warehouse Pirate Bug Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae) on a Diet of Liposcelis decolor (Pearman) (Psocodea: Liposcelididae) [PDF]
Augustine Bosomtwe +4 more
openalex +1 more source
The Necessity of Dynamic Workflow Managers for Advancing Self‐Driving Labs and Optimizers
We assess the maturity and integration readiness of key methodologies for Materials Acceleration Platforms, highlighting the need for dynamic workflow managers. Demonstrating this, we integrate PerQueue into a color‐mixing robot, showing how flexible orchestration improves coordination and optimization.
Simon K. Steensen +6 more
wiley +1 more source
This study presents an automated system integrating a capillary force gripper and machine learning‐based object detection for sorting and placing submillimeter objects. The system achieved stable and simultaneous manipulation of four object types, with an average task time of 86.0 seconds and a positioning error of 157 ± 84 µm, highlighting its ...
Satoshi Ando +4 more
wiley +1 more source
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla +4 more
wiley +1 more source
Artificial Intelligence for Bone: Theory, Methods, and Applications
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan +3 more
wiley +1 more source
Deep Learning‐Assisted Coherent Raman Scattering Microscopy
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu +4 more
wiley +1 more source
A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source
A Comprehensive Assessment and Benchmark Study of Large Atomistic Foundation Models for Phonons
We benchmark six large atomistic foundation models on 2429 crystalline materials for phonon transport properties. The rapid development of universal machine learning potentials (uMLPs) has enabled efficient, accurate predictions of diverse material properties across broad chemical spaces.
Md Zaibul Anam +5 more
wiley +1 more source

