Results 231 to 240 of about 510,394 (371)

Taguchi–Bayesian Sampling: A Roadmap for Polymer Database Construction Toward Small Representative Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
This article establishes a Taguchi–Bayesian sampling strategy to reconstruct polymer processing–property landscape at minimal sampling cost, generically building the roadmap for materials database construction from sampling their vast design space. This sampling strategy is featured by an alternating lesson between uniformity and representativeness ...
Han Liu, Liantang Li
wiley   +1 more source

Machine Learning‐Assisted Second‐Order Perturbation Theory for Chemical Potential Correction Toward Hubbard U Determination

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this work, the Doubao large language model (LLM) is involved in the formula derivation processes for Hubbard U determination regarding the second‐order perturbations of the chemical potential. The core ML tool is optimized for physical domain knowledge, which is not limited to parameter prediction but rather serves as an interactive physical theory ...
Mingzi Sun   +8 more
wiley   +1 more source

Strong association between psychiatric disorders co-occurrence and dementia: a Bayesian approach on a 14-year clinical data warehouse. [PDF]

open access: yesBMJ Ment Health
Baudouin E   +7 more
europepmc   +1 more source

Sampling Strategy: An Overlooked Factor Affecting Artificial Intelligence Prediction Accuracy of Peptides’ Physicochemical Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan   +3 more
wiley   +1 more source

Who's in the Warehouse Now?

open access: yesThe Journal of Aesthetics and Art Criticism, 1972
openaire   +1 more source

Advancing Efficient Error Reduction in DNA Data Storage Systems with Deep Learning‐Based Denoising Models

open access: yesAdvanced Intelligent Discovery, EarlyView.
Deep learning‐based denoising models are applied to DNA data storage systems to enhance error reduction and data fidelity. By integrating DnCNN with DNA sequence encoding methods, the study demonstrates significant improvements in image quality and correction of substitution errors, revealing a promising path toward robust and efficient DNA‐based ...
Seongjun Seo   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy