Results 271 to 280 of about 1,205,367 (330)

2‐line Ferrihydrite Enhance Microbial Synthesis of Plant Biostimulants in Composted Biosolid by Regulating Phyla Pseudomonadota and Actinomycetota

open access: yesAdvanced Science, EarlyView.
This study explores how iron and manganese oxides transform sewage sludge into plant biostimulants during composting. Non‐targeted identification reveals the main species of plant biostimulants. Metagenomic analysis reveals that 2‐line ferrihydrite specifically enriches microbial genes for biosynthesis, boosting plant‐growth promoters.
Yu Zhang   +7 more
wiley   +1 more source

Potential risk assessment for water pollution accident in Taipu River region, Taihu Basin

open access: diamond, 2019
Hongwei Zhou   +6 more
openalex   +2 more sources

Perfluorooctanoic Acid Exposure Causes Macrophage Ammonia Retention and Induces Spontaneous Miscarriages

open access: yesAdvanced Science, EarlyView.
PFOA exposure induces pregnancy loss by promoting glutaminolysis, which further causes ammonia accumulation in macrophages. Cellular ammonia retention results in damage to mitochondria and lysosomes, which leads to cell death eventually. Impaired lysosomes also decrease the secretion of the Cathepsin B (CTSB), and attenuate macrophage infiltration and ...
Yongbo Zhao   +6 more
wiley   +1 more source

Hyperelastic Starch Hydrogel Configures Edible and Biodegradable All‐Components for Soft Robots

open access: yesAdvanced Science, EarlyView.
Hyperelastic starch hydrogel is tailored via a phase separation strategy of solvent‐antisolvent co‐modulation. The mechanical performance of starch hydrogel is widely tuned with maximum strains: 194.4–361.4%; maximum tensile stresses: 34–192 kPa; and Young's moduli: 36.0–205.8 kPa. Notably, the hydrogel achieves complete soil degradation within 24 days
Siyu Yao   +7 more
wiley   +1 more source

Ultra‐High Friction and Adhesion in Hydrogel Layer Driven by Wet‐to‐Dry Transition Dynamics

open access: yesAdvanced Science, EarlyView.
This work reveals a critical wet‐to‐dry transition in polyacrylamide hydrogel layers that induces volumetric shrinkage, resulting in enhanced interfacial contact and dramatically increased friction and adhesion. Leveraging this transition enables strong, reversible gripping on diverse surfaces, offering new insights for hydrogel‐based gripping ...
Chenxu Liu   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy