Results 141 to 150 of about 1,385,566 (326)

A Universal Way to Manipulate Droplet via Light‐Fueled Thermocapillary Convection

open access: yesAdvanced Functional Materials, EarlyView.
A non‐contact light‐induced droplet manipulation strategy fueled by mid‐infrared (MIR) light irradiation is introduced. No additional additives and/or complex substrate are required. Here, thermocapillary convection, directly generated by temperature gradient at outer surface of droplet via localized surface heating, plays a key role to propel the ...
Hyesun Hwang   +5 more
wiley   +1 more source

Fluorophobic Effect Enables Selective Detection of PFAS in Water with Electrolyte‐Gated Organic Transistors

open access: yesAdvanced Functional Materials, EarlyView.
PerFluoroAlkyl Substances (PFAS) are responsible of major and persistent environmental pollution worldwide. This work demonstrates an ultra‐sensitive sensor for PFAS based on an organic transistor whose gate is functionalized with a binary self‐assembled monolayer containing a perfluorinated molecule.
Rian Zanotti   +8 more
wiley   +1 more source

Novel soliton solutions and phase plane analysis in nonlinear Schrödinger equations with logarithmic nonlinearities

open access: yesScientific Reports
This paper investigates a generalized form of the nonlinear Schrödinger equation characterized by a logarithmic nonlinearity. The nonlinear Schrödinger equation, a fundamental equation in nonlinear wave theory, is applied across various physical systems ...
Du’a Al-zaleq, Lewa’ Alzaleq
doaj   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Entering the Strong Coupling Regime in Conventional Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
Organic solar cells convert light into fossil‐free energy, yet they still cannot compete with their silicon counterparts. Strong exciton‐photon coupling can ameliorate some properties of organic solar cells, but it requires additional mirrors that diminish light absorbance. Here, mirror‐free strong exciton‐photon coupling is implemented in conventional
Nicola Peruffo   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy