Results 211 to 220 of about 5,378,040 (354)

Understanding Postdeposition Treatments of Hole‐Transporting Self‐Assembling Molecules for Perovskite/Silicon Tandem Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
The influence of postdeposition treatments on the formation of self‐assembling (mono)layers commonly utilized as hole transport layers in perovskite‐based solar cells is thoroughly investigated. The implementation of a washing step and an annealing step at temperatures exceeding the current literature standards leads to an enhanced layer quality and ...
Jann B. Landgraf   +14 more
wiley   +1 more source

Fluorophobic Effect Enables Selective Detection of PFAS in Water with Electrolyte‐Gated Organic Transistors

open access: yesAdvanced Functional Materials, EarlyView.
PerFluoroAlkyl Substances (PFAS) are responsible of major and persistent environmental pollution worldwide. This work demonstrates an ultra‐sensitive sensor for PFAS based on an organic transistor whose gate is functionalized with a binary self‐assembled monolayer containing a perfluorinated molecule.
Rian Zanotti   +8 more
wiley   +1 more source

Space-time fractional Zener wave equation. [PDF]

open access: yesProc Math Phys Eng Sci, 2015
Atanackovic TM   +4 more
europepmc   +1 more source

Cu2O/Cu Chiral Catalysts for Highly Selective Solar‐Assisted CO2‐to‐CO Electroreduction

open access: yesAdvanced Functional Materials, EarlyView.
To address the poor target‐product selectivity of the eCO2RR, breakthrough approaches based on the chiral‐induced spin selectivity phenomenon enhance the Faradaic efficiency (FE) for target hydrocarbons, such as CO. To induce this spin polarization strategy in Cu2O/Cu catalysts, it is proposed using amine‐based intermediate organic molecules with ...
Hyungsoo Lee   +13 more
wiley   +1 more source

Entering the Strong Coupling Regime in Conventional Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
Organic solar cells convert light into fossil‐free energy, yet they still cannot compete with their silicon counterparts. Strong exciton‐photon coupling can ameliorate some properties of organic solar cells, but it requires additional mirrors that diminish light absorbance. Here, mirror‐free strong exciton‐photon coupling is implemented in conventional
Nicola Peruffo   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy