Results 121 to 130 of about 976,981 (283)
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
In this research, it is demonstrated that dual nitrogen and sulfur doping in hollow carbon spheres creates a tunable coordination environment that stabilizes cationic Pd single atoms as robust organometallic complexes, enabling high selectivity and stability for electrochemical hydrogen peroxide production under harsh acidic and peroxide‐rich ...
Guilherme V. Fortunato +16 more
wiley +1 more source
Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus +5 more
wiley +1 more source
Assessing the safety of amphibious aircraft hinges significantly on two key factors: wave-added resistance and motion stability during takeoff and landing on water surfaces. To tackle this, we employed the Reynolds-averaged Navier–Stokes (RANS) equations
Huawei Sun +5 more
doaj +1 more source
Charge‐Induced Morphing Gels for Bioinspired Actuation
This study introduces a novel electroactive actuation mechanism that enables the gel material to generate substantial and reversible shape‐changing while preserving topological and isochoric (volumetric) equivalence. The resultant morphing behaviors can mimic the movements of muscle‐driven organelles in nature, including cilia‐like beating and ...
Ciqun Xu +4 more
wiley +1 more source
Microsphere Autolithography—A Scalable Approach for Arbitrary Patterning of Dielectric Spheres
MicroSphere Autolithography (µSAL) enables scalable fabrication of patchy particles with customizable surface motifs. Focusing light through dielectric microspheres creates well defined, tunable patches via a conformal poly(dopamine) photoresist. Nearly arbitrary surface patterns can be achieved, with the resolution set by the index contrast between ...
Elliott D. Kunkel +3 more
wiley +1 more source
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source
The wave pattern generated by motion of autonomous underwater vehicle (AUV) near the water free surface is one of the significant factors in order to identify the AUV. In this research, firstly simulating the flow with constant velocity around the Wigley
masih honarmand +2 more
doaj
On the kinematics-wave motion of living particles in suspension. [PDF]
Malvar S +3 more
europepmc +1 more source
Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu +12 more
wiley +1 more source

