Results 161 to 170 of about 143,451 (312)

One digital health through wearables: a viewpoint on human-pet integration towards Healthcare 5.0. [PDF]

open access: yesFront Digit Health
Haghi M   +7 more
europepmc   +1 more source

Tunable and Recyclable Piezoelectric Biomaterials via Ion‐Directed Guanine‐Quadruplex Assembly

open access: yesAdvanced Functional Materials, EarlyView.
Guanine‐quadruplex (GQ) assemblies, formed via ion‐mediated self‐assembly of amphiphilic guanine derivatives, are introduced as tunable and recyclable piezoelectric biomaterials. Distinct alkali ions induce unique dipole configurations and piezoelectric outputs, with K⁺ yielding the highest performance.
Seungho Lee   +9 more
wiley   +1 more source

Wearable Computer

open access: yesThe Journal of the Institute of Image Information and Television Engineers, 2001
openaire   +2 more sources

Hydrogen‐Bond‐Rich Supramolecular Multiblock Copolymers Facilitate Rapid Zn2+ Migration in Quasi‐Solid‐State Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The disordered growth of dendrites, corrosion, parasitic side reactions, slow de‐solvation kinetics, and inherent safety risks significantly hinder the practical deployment of conventional liquid electrolyte zinc‐ion batteries. In contrast, the novel PU‐EG+DMPA‐Zn polyurethane quasi‐solid‐state electrolyte, enriched with abundant polar functional ...
Ruiqi Liu   +10 more
wiley   +1 more source

Microsphere Autolithography—A Scalable Approach for Arbitrary Patterning of Dielectric Spheres

open access: yesAdvanced Functional Materials, EarlyView.
MicroSphere Autolithography (µSAL) enables scalable fabrication of patchy particles with customizable surface motifs. Focusing light through dielectric microspheres creates well defined, tunable patches via a conformal poly(dopamine) photoresist. Nearly arbitrary surface patterns can be achieved, with the resolution set by the index contrast between ...
Elliott D. Kunkel   +3 more
wiley   +1 more source

Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu   +7 more
wiley   +1 more source

Using a Transdisciplinary Approach in Learning Communities for Designing Wearable Stress Management for Vulnerable Populations: Development and Usability Study. [PDF]

open access: yesJMIR Form Res
Peeters MWH   +10 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy