Results 241 to 250 of about 15,216,637 (286)
Some of the next articles are maybe not open access.

Global well-posedness for the derivative nonlinear Schrödinger equation

Inventiones Mathematicae, 2020
This paper is dedicated to the study of the derivative nonlinear Schrödinger equation on the real line. The local well-posedness of this equation in the Sobolev spaces Hs(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym ...
H. Bahouri, G. Perelman
semanticscholar   +1 more source

Global Well-Posedness of Free Interface Problems for the Incompressible Inviscid Resistive MHD

Communications in Mathematical Physics, 2020
We consider the plasma-vacuum interface problem in a horizontally periodic slab impressed by a uniform non-horizontal magnetic field. The lower plasma region is governed by the incompressible inviscid and resistive MHD, the upper vacuum region is ...
Yanjin Wang, Z. Xin
semanticscholar   +1 more source

On the well-posedness of the Eckhaus equation

Physics Letters A, 1997
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
M. J. ABLOWITZ   +2 more
openaire   +2 more sources

Well-Posedness and L-Well-Posedness for Quasivariational Inequalities

Journal of Optimization Theory and Applications, 2006
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +2 more sources

Well Posedness for Pressureless Flow

Communications in Mathematical Physics, 2001
This paper considers the one-dimensional pressureless gases and studies the uniqueness of weak solutions when the initial data is a Radon measure. It is shown that besides the Oleinik entropy condition, it is important to require the energy to be weakly continuous initially; and without this energy condition, the weak solution satisfying the Oleinik ...
Huang, Feimin, Wang, Zhen
openaire   +2 more sources

Weak formulation and well-posedness

2021
This chapter focuses on the weak formulation of the time-dependent Stokes equations. We consider two possible weak formulations. The first one enforces the divergence-free constraint on the velocity field without introducing the pressure. This formulation can be handled by using the same analysis tools as for parabolic problems.
Alexandre Ern, Jean-Luc Guermond
openaire   +1 more source

Well Posedness and Inf-Convolution

Journal of Optimization Theory and Applications, 2018
We prove that the notion of Tykhonov well-posed problems is stable under the operation of inf-convolution. We deal with lower semicontinuous functions (not necessarily convex) defined on a metric magma. Several applications are given, in particular to the study of the map argmin.
openaire   +3 more sources

On Well-Posedness of Relay Systems

IFAC Proceedings Volumes, 2001
Abstract In this paper we study the well-posedness (existence and uniqueness of solutions) of linear relay systems with respect to two different solution concepts. We derive necessary and sufficient conditions for well-posedness in the sense of Filippov of linear systems of relative degree one and two in closed loop with relay feedback.
Pogromsky, A.Y.   +2 more
openaire   +2 more sources

Well-posedness and weak well-posedness in Banach spaces

1997
Let (X, ‖ · ‖) be a Banach space. Let Φ be the class of all continuous linear (affine) functionals. A function f is Φ-convex if and only if it is convex and lower semi-continuous.
Diethard Pallaschke, Stefan Rolewicz
openaire   +1 more source

On well‐posedness and conditioning in optimization

ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2004
AbstractWe survey some results dealing with well‐posedness of scalar optimization problems, with applications to the optimal control of ordinary differential equations under plant perturbations. Then we deal with the definition of a condition number for optimization problems.
openaire   +1 more source

Home - About - Disclaimer - Privacy