Results 41 to 50 of about 59,515 (231)
Quasi‐invariance of Gaussian measures for the 3d$3d$ energy critical nonlinear Schrödinger equation
Abstract We consider the 3d$3d$ energy critical nonlinear Schrödinger equation with data distributed according to the Gaussian measure with covariance operator (1−Δ)−s$(1-\Delta)^{-s}$, where Δ$\Delta$ is the Laplace operator and s$s$ is sufficiently large. We prove that the flow sends full measure sets to full measure sets. We also discuss some simple
Chenmin Sun, Nikolay Tzvetkov
wiley +1 more source
Abstract We address the problem of regularity of solutions ui(t,x1,…,xN)$u^i(t, x^1, \ldots, x^N)$ to a family of semilinear parabolic systems of N$N$ equations, which describe closed‐loop equilibria of some N$N$‐player differential games with Lagrangian having quadratic behaviour in the velocity variable, running costs fi(x)$f^i(x)$ and final costs gi(
Marco Cirant, Davide Francesco Redaelli
wiley +1 more source
On the Local Well-posedness of a 3D Model for Incompressible Navier-Stokes Equations with Partial Viscosity [PDF]
In this short note, we study the local well-posedness of a 3D model for incompressible Navier-Stokes equations with partial viscosity. This model was originally proposed by Hou-Lei in \cite{HouLei09a}.
Hou, Thomas Y., Shi, Zuoqiang, Wang, Shu
core +1 more source
On the Behavior of Two C1 Finite Elements Versus Anisotropic Diffusion
Bi‐cubic Hemite‐Bézier and reduced cubic Hsieh‐Clough‐Tocher finite elements, of class C1, are compared for the solution of a highly anisotropic diffusion equation. They are tested numerically for various ratios of the diffusion coefficients on different meshes, even aligned with the anisotropy.
Blaise Faugeras+3 more
wiley +1 more source
Global and microlocal aspects of Dirac operators: Propagators and Hadamard states
Abstract We propose a geometric approach to construct the Cauchy evolution operator for the Lorentzian Dirac operator on Cauchy‐compact globally hyperbolic 4‐manifolds. We realize the Cauchy evolution operator as the sum of two invariantly defined oscillatory integrals—the positive and negative Dirac propagators—global in space and in time, with ...
Matteo Capoferri, Simone Murro
wiley +1 more source
Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density
In this paper, we prove the global existence and uniqueness of solution to d-dimensional (for $d=2,3$) incompressible inhomogeneous Navier-Stokes equations with initial density being bounded from above and below by some positive constants, and with ...
Paicu, Marius+2 more
core +3 more sources
Generalized Levitin-Polyak Well-Posedness of Vector Equilibrium Problems
We study generalized Levitin-Polyak well-posedness of vector equilibrium problems with functional constraints as well as an abstract set constraint.
Lai-Jun Zhao, Yan Wang, Jian-Wen Peng
doaj +2 more sources
ABSTRACT The well‐posedness results for mild solutions to the fractional neutral stochastic differential system with Rosenblatt process with Hurst index Ĥ∈12,1$$ \hat{H}\in \left(\frac{1}{2},1\right) $$ is discussed in this article. To demonstrate the results, the concept of bounded integral contractors is combined with the stochastic result and ...
Dimplekumar N. Chalishajar+3 more
wiley +1 more source
Local Well-Posedness for Relaxational Fluid Vesicle Dynamics
We prove the local well-posedness of a basic model for relaxational fluid vesicle dynamics by a contraction mapping argument.
Köhne, Matthias, Lengeler, Daniel
core +1 more source
Well-Posedness by Perturbations for Variational-Hemivariational Inequalities
We generalize the concept of well-posedness by perturbations for optimization problem to a class of variational-hemivariational inequalities. We establish some metric characterizations of the well-posedness by perturbations for the variational ...
Shu Lv+3 more
doaj +1 more source