Results 11 to 20 of about 45,941 (258)
Nonsymmetric Askey–Wilson polynomials as vector-valued polynomials [PDF]
Nonsymmetric Askey-Wilson polynomials are usually written as Laurent polynomials. We write them equivalently as 2-vector-valued symmetric Laurent polynomials.
Tom H. Koornwinder, Fethi Bouzeffour
core +8 more sources
Befriending Askey–Wilson polynomials [PDF]
We recall five families of polynomials constituting a part of the so-called Askey–Wilson scheme. We do this to expose properties of the Askey–Wilson (AW) polynomials that constitute the last, most complicated element of this scheme. In doing so we express AW density as a product of the density that makes q-Hermite polynomials orthogonal times a ...
Paweł J. Szabłowski
openalex +4 more sources
Multiple Wilson and Jacobi-Pineiro polynomials [PDF]
22 pages, 2 ...
Bernhard Beckermann +2 more
openalex +4 more sources
Turán Inequalities for Symmetric Askey-Wilson Polynomials [PDF]
The authors study a renormalized \(A-W\) polynomial \(V_n(x)\). Using the Szász technique they establish the inequalities \[ 0\leq V_n^2(x)-V_{n+1} (x)V_{n-1} (x)\leq K, \] where \(K\) is independent of \(x\). The two inequalities hold under certain conditions upon parameters and variable.
Luís Daniel Abreu, J. Bustoz
openalex +4 more sources
Askey-Wilson polynomial refers to a four-parameter family of q-hypergeometric orthogonal polynomials which contains all families of classical orthogonal polynomials (in the wide sense) as special or limit cases.
Tom H. Koornwinder
openalex +3 more sources
The associated Askey-Wilson polynomials [PDF]
The most general system of basic hypergeometric orthogonal polynomials are the Askey-Wilson polynomials, which are given as a basic hypergeometric series \(_ 4\Phi_ 3\). Like all orthogonal polynomials they satisfy a three-term recurrence relation \[ 2xp_ n(x)=A_ np_{n+1}(x)+B_ np_ n(x)+C_ np_{n-1}(x). \] The recurrence coefficients \(A_ n\), \(B_ n\),
Mourad E. H. Ismail, Mizan Rahman
openalex +2 more sources
Bootstrapping and Askey–Wilson polynomials [PDF]
The mixed moments for the Askey-Wilson polynomials are found using a bootstrapping method and connection coefficients. A similar bootstrapping idea on generating functions gives a new Askey-Wilson generating function. An important special case of this hierarchy is a polynomial which satisfies a four term recurrence, and its combinatorics is studied.
Jang Soo Kim, Dennis Stanton
openalex +4 more sources
On another characterization of Askey-Wilson polynomials [PDF]
In this paper we show that the only sequences of orthogonal polynomials $(P_n)_{n\geq 0}$ satisfying \begin{align*} ϕ(x)\mathcal{D}_q P_{n}(x)=a_n\mathcal{S}_q P_{n+1}(x) +b_n\mathcal{S}_q P_n(x) +c_n\mathcal{S}_q P_{n-1}(x), \end{align*} ($c_n\neq 0$) where $ϕ$ is a well chosen polynomial of degree at most two, $\mathcal{D}_q$ is the Askey-Wilson ...
D. Mbouna, A. Suzuki
openalex +3 more sources
Liquid-vapor equilibrium and evaporation rate of Cd-Zn liquid alloy [PDF]
In this study, LVE (liquid-vapor equilibrium) data of cadmium-zinc system were determined at a pressure of 7.5 Pa. We compare the use of the Redlich-Kister polynomials with the Wilson equation in fitting activities.
Zhao W.-C., Xu B.-Q., Yang H.-W.
doaj +1 more source
A characterization of Askey-Wilson polynomials [PDF]
We show that the only monic orthogonal polynomials $\{P_n\}_{n=0}^{\infty}$ that satisfy $$ (x)\mathcal{D}_{q}^2P_{n}(x)=\sum_{j=-2}^{2}a_{n,n+j}P_{n+j}(x),\; x=\cos ,\;~ a_{n,n-2}\neq 0,~ n=2,3,\dots,$$ where $ (x)$ is a polynomial of degree at most $4$ and $\mathcal{D}_{q}$ is the Askey-Wilson operator, are Askey-Wilson polynomials and their ...
Maurice Kenfack Nangho, Kerstin Jordaan
openalex +5 more sources

