Results 181 to 190 of about 1,320,162 (304)

Hybrid Auxetic Architectures: Integrating Curvature‐Driven Design for Enhanced Mechanical Tunability and Structural Performance

open access: yesAdvanced Engineering Materials, EarlyView.
Curvature‐tuned auxetic lattices are designed, fabricated, and mechanically characterized to reveal how geometric curvature governs stretchability, stress redistribution, and Poisson's ratio evolution. Photoelastic experiments visualize stress pathways, while hyperelastic simulations quantify deformation mechanics.
Shuvodeep De   +3 more
wiley   +1 more source

Multimodal Mechanical Testing of Additively Manufactured Ti6Al4V Lattice Structures: Compression, Bending, and Fatigue

open access: yesAdvanced Engineering Materials, EarlyView.
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart   +3 more
wiley   +1 more source

PV‐fed DVR for simultaneous real power injection and sag/swell mitigation in a wind farm [PDF]

open access: bronze, 2018
Subramaniyan Priyavarthini   +3 more
openalex   +1 more source

Wind Turbine Power Curve Modelling using Gaussian Mixture Copula, ANN Regressive and BANN

open access: diamond, 2022
Roberto Lázaro   +2 more
openalex   +1 more source

Unidirectional Tape‐Based Composites from Hemp and Pineapple Leaf Fiber: Mechanical Performance in Conventional and Bio‐Based Matrices

open access: yesAdvanced Engineering Materials, EarlyView.
The study investigates novel semi‐finished products made of unidirectionally arranged hemp or pineapple leaf fiber‐reinforced composites produced from different matrices. The materials are analyzed in terms of their mechanical and interfacial properties and void content.
Nina Graupner   +22 more
wiley   +1 more source

Home - About - Disclaimer - Privacy