Results 191 to 200 of about 416,908 (286)

Inverse‐Designed on‐Chip Terahertz Three‐Channel Mode and Wavelength Division Demultiplexer

open access: yesAdvanced Photonics Research, EarlyView.
An ultracompact terahertz demultiplexer is developed using a hybrid inverse design that combines genetic algorithms with topology optimization. The device enables simultaneous mode‐ and wavelength‐division multiplexing within a footprint smaller than two wavelengths.
Faqian Chong   +5 more
wiley   +1 more source

Reducing Personalization Time and Energy Cost While Walking Outdoors with a Portable Exosuit

open access: yesAdvanced Robotics Research, EarlyView.
Rapid Real‐World Optimization! An AF‐based human‐in‐the‐loop optimization strategy rapidly personalizes a portable hip extension exosuit for incline walking. Real‐time Bayesian optimization of assistive force significantly reduces metabolic energy—up to 16.2%—while converging in just 3 min 24 s.
Kimoon Nam   +7 more
wiley   +1 more source

Remote Control of Hand Actuators via Glove Sensors for Medical Care Applications

open access: yesAdvanced Robotics Research, EarlyView.
This study presents a novel textile‐based sensory glove–actuator system for remote medical care, explored through finite element simulations. By integrating capacitive sensors, pneumatic actuators, and machine learning, the system models real‐time hand movement control.
Bahman Taherkhani, Mahdi Bodaghi
wiley   +1 more source

On–Off Switchable Micromotors for Use in Steerable Microvehicles

open access: yesAdvanced Robotics Research, EarlyView.
Electrically controllable micromotors and microvehicles are developed by tuning the diffusion of the fuel. Self‐propelled micromotors using bubble propulsion show great promise for miniaturized devices with multiuse purposes such as cargo delivery and sensing. However, there is currently no method to electrically switch the micromotors on or off. Here,
Hugo Severinsson   +3 more
wiley   +1 more source

Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics

open access: yesAdvanced Robotics Research, EarlyView.
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy