Results 41 to 45 of about 3,577,756 (45)

The sectorial projection defined from logarithms

open access: yes, 2011
For a classical elliptic pseudodifferential operator P of order m>0 on a closed manifold X, such that the eigenvalues of the principal symbol p_m(x,\xi) have arguments in \,]\theta,\phi [\, and \,]\phi, \theta +2\pi ...
Grubb, Gerd
core   +1 more source

Fourier transform and rigidity of certain distributions

open access: yes, 2012
Let $E$ be a finite dimensional vector space over a local field, and $F$ be its dual. For a closed subset $X$ of $E$, and $Y$ of $F$, consider the space $D^{-\xi}(E;X,Y)$ of tempered distributions on $E$ whose support are contained in $X$ and support of ...
BINYONG SUN   +3 more
core   +1 more source

Средневековый пещерный комплекс хребта Иограф над г. Ялтой / Medieval cave complex of Iograf Ridge over Yalta

open access: yesМатериалы по археологии и истории античного и средневекового Крыма, 2014
Средневековый пещерный комплекс над г. Ялтой расположен на высоте около 1250 м над уровнем моря. Он состоит из двух пещер Иограф I и II. В первой из них некогда располагался храм, известный по рисункам художников конца XIX — начала XX вв., во второй ...
Турова Н.П. / Turova N.P.
doaj  

Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization

open access: yes, 2020
In this paper, we study a class of stochastic optimization problems, referred to as the \emph{Conditional Stochastic Optimization} (CSO), in the form of $\min_{x \in \mathcal{X}} \EE_{\xi}f_\xi\Big({\EE_{\eta|\xi}[g_\eta(x,\xi)]}\Big)$, which finds a ...
Chen, Xin, He, Niao, Hu, Yifan
core  

A Smoothed-Distribution Form of Nadaraya-Watson Estimation [PDF]

open access: yes
Given observation-pairs (xi ,yi ), i = 1,...,n , taken to be independent observations of the random pair (X ,Y), we sometimes want to form a nonparametric estimate of m(x) = E(Y/ X = x). Let YE have the empirical distribution of the yi , and let (XS ,YS )
John T. Addison, Ralph W. Bailey
core  

Home - About - Disclaimer - Privacy