Results 51 to 60 of about 60,193 (272)
A hybrid system for de‐icing made of gradient polymer coatings, deposited on aluminum coupled with an electromechanical system, is demonstrated as an effective and durable strategy for reducing drastically ice adhesion. The system is capable of detaching ice blocks over the coating in less than 1 s, regardless of the ice type and covered area ...
Gabriel Hernández Rodríguez+8 more
wiley +1 more source
Experimental investigations had been done in this study to demonstrate the effect of natural particles used as a reinforcement material to unsaturated polyester resin.
Orhan S. Abdullah
doaj +1 more source
A Novel Simulation Approach for Damage Evolution during Tailored Forming
Traditional damage models are struggling to accurately and efficiently simulate large‐scale three‐dimensional models with a great number of degrees of freedoms. A new gradient‐enhanced damage model based on the extended Hamilton principle can significantly reduce the computation time while ensuring mesh‐independence which is suitable to use in tailored
Fangrui Liu+2 more
wiley +1 more source
Bioinspired Design of Isotropic Lattices with Tunable and Controllable Anisotropy
This study introduces nested isotropic lattices, integrating architectural elements like nesting orders and orientations inspired by bioarchitectures. The design enables tunable anisotropy across nine mono‐nest and twenty multi‐nest lattices with 252 parametric variations, demonstrating transitions from shear‐ to tensile‐compression‐dominant behaviors ...
Ramalingaiah Boda+2 more
wiley +1 more source
Investigation of Apple Vibration Characteristics Using Finite Element Modal Analysis
The most important quality indicator of fruits is the flesh firmness which is well correlated to their young’s modulus. In this research variation of vibration characteristics (shape modes, natural frequency) of apple due to change of material ...
R Mirzaei+3 more
doaj +1 more source
Mechanical metamaterials capable of compressive stiffness tunability, shape morphing, and post‐fabrication modularity. Herein, the 3D unit cell design is based on an assembly of bistable von Mises trusses that exhibit a switch in compressive stiffness and resting height from one stable state to the other.
Yannis Liétard+2 more
wiley +1 more source
Nonlinearity and Domain Switching in a 3D‐Printed Architected Ferroelectric
By combining functional properties measurement with in situ 2D X‐ray microdiffraction experiments, it is shown that nonlinear polarization and strain responses of a 3D‐printed architected ferroelectric are driven by localized progression of domain switching, which depends on nonuniform electric‐field distribution as well as evolving stress fields.
Abhijit Pramanick+7 more
wiley +1 more source
Young's Modulus of Single-Crystal Fullerene C𝟕𝟎 Nanotubes
We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method.
Tokushi Kizuka+2 more
doaj +1 more source
Elastic Properties of Carbon Nanotubes and Nanoropes [PDF]
Elastic properties of carbon nanotubes and nanoropes are investigated using an empirical force-constant model. For single and multi-wall nanotubes the elastic moduli are shown to be insensitive to details of the structure such as the helicity, the tube radius and the number of layers. The tensile Young's modulus and the torsion shear modulus calculated
arxiv +1 more source
Using novel probe‐based metrics, this study evaluates lattice structures on criteria critical to cellular solid optimization. Triply‐periodic minimal surface (TPMS) lattices outperform other lattices, offering more predictable mechanical behavior in complex design spaces and, as a result, higher performance in optimized models.
Firas Breish+2 more
wiley +1 more source