Results 111 to 120 of about 3,392,687 (340)

Ionic Control of Microstructure and Lubrication in Charged, Physically Cross‐Linked Hydrogels

open access: yesAdvanced Functional Materials, EarlyView.
Here, charged, physically cross‐linked poly(methacrylamide‐co‐methacrylic acid) hydrogels stabilized by a short‐range attractive, long‐range repulsive potential is investigated. This work uncovers how salt addition alters not only swelling, but also the microstructure and dynamics, near‐surface stiffness and charge, and ultimately, its lubricity. Salts
Alexander Deptula   +1 more
wiley   +1 more source

Molecular Dynamics-Based Strength Estimates of Beta-Solenoid Proteins

open access: yes, 2017
The use of beta-solenoid proteins as functionalizable, nanoscale, self-assembling molecular building blocks may have many applications, including templating the growth of wires or higher-dimensional structures. By understanding their mechanical strengths,
Cox, Daniel L.   +2 more
core   +1 more source

Anisotropic Shear Properties of Organic Interfaces in Bio‐composite Materials

open access: yesAdvanced Functional Materials, EarlyView.
A novel cantilever design enables direct probing of shear properties at single organic interfaces within biocomposite prismatic ultrastructures. By decoupling lateral and torsional shear responses, the method reveals isotropic behavior in Atrina vexillum and pronounced anisotropy in Unio pictorum.
Kian Tadayon   +2 more
wiley   +1 more source

Unloaing and re-loading features of pre-strained steel at low temperature [PDF]

open access: yes, 2013
In the present work the response of medium carbon steel is investigated experimentally and information on the features of initial loading, unloading, re-loading and inverse loading processes is collected.
Akiyama, Masayoshi, Dongdong, Li
core  

Mechanical Properties of Architected Polymer Lattice Materials: A Comparative Study of Additive Manufacturing and CAD Using FEM and µ‐CT

open access: yesAdvanced Functional Materials, EarlyView.
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker   +5 more
wiley   +1 more source

Microporous Microgel Assemblies Facilitating the Recruitment and Osteogenic Differentiation of Progenitor Cells for Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
There is a significant need for biomaterials with well‐defined stability and bioactivity to support tissue regeneration. In this study, we developed a tunable microgel platform that enables the decoupling of stiffness from porosity, thereby promoting bone regeneration.
Silvia Pravato   +9 more
wiley   +1 more source

Ion‐Selective Microporous Membranes via One‐Step Copolymerization Enable High‐Performance Redox Flow Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A scalable one‐step copolymerization strategy is developed to produce low‐cost microporous ion exchange membranes that boost both the efficiency and lifespan of flow batteries. When combined with organic electrolytes in aqueous systems, these membranes enable safe and cheap flow battery energy storage, supporting the widespread integration of renewable
Jiaye Liu   +7 more
wiley   +1 more source

Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment

open access: yesNuclear Engineering and Technology, 2017
Reduced activation ferritic/martensitic (RAFM) steels are widely applied as structural materials in the nuclear industry. To investigate hydrogen's effect on RAFM steels' elastic properties and the mechanism of that effect, a procedure of first ...
Sinan Zhu   +3 more
doaj   +1 more source

Statistical mechanics of thin spherical shells

open access: yes, 2016
We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion ...
Kosmrlj, Andrej, Nelson, David R.
core   +2 more sources

Home - About - Disclaimer - Privacy