Results 231 to 240 of about 1,257,945 (312)

Endothelial Cells Angiogenesis in Sulfated Glycosaminoglycan (GAG) Hydrogels Enhanced by Bioactive Glass‐Released Ions

open access: yesAdvanced Functional Materials, EarlyView.
A mechanically tunable hydrogel composed of gelatin, chondroitin sulfate and laminin promotes angiogenesis in vitro without the supplement of growth factors. Endothelial cells morphogenesis was further enhanced by medium conditioned with bioactive glass 58S‐released ions (Ca and Si), thus offering a promising strategy to vascularize 3D tissue ...
Marco Piazzoni   +13 more
wiley   +1 more source

Knowledge Representation of a Multicenter Adolescent and Young Adult Cancer Infrastructure: Development of the STRONG AYA Knowledge Graph. [PDF]

open access: yesJCO Clin Cancer Inform
Hogenboom J   +11 more
europepmc   +1 more source

Electro‐Active Polymer Actuated Microfiltration Membranes: Design, Performance, and Particle Dynamics

open access: yesAdvanced Functional Materials, EarlyView.
The concept of foulant particle manipulation and detachment from active microfiltration membranes via voltage‐driven vibrations is introduced. Actuator components are initially integrated onto the filtration membranes using an airbrush spray printing technique.
Irem Gurbuz, Hanieh Bazyar, Andres Hunt
wiley   +1 more source

Fully Bio‐Based Gelatin Organohydrogels via Enzymatic Crosslinking for Sustainable Soft Strain and Temperature Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Enzymatically crosslinked gelatin‐based organohydrogels, fabricated through a fully bio‐based and scalable process, exhibit exceptional strain and temperature sensing capabilities with minimal interference from environmental humidity. These transparent, stretchable, and ionically conductive materials operate without synthetic fillers or dopants.
Pietro Tordi   +7 more
wiley   +1 more source

Interconnected Porous Hydrogels with Tunable Anisotropy Through Aqueous Emulsion Bioprinting

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bioprintable microporous bioink is developed using an aqueous two‐phase system (ATPS) composed of extracellular matrix (ECM) mimetic biopolymers. The ATPS bioink enables the fabrication of interconnected porous architectures with up to 70% porosity, supporting long‐term cell viability and 3D cell alignment, enabling a simultaneous generation of ...
Hugo Edgar‐Vilar   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy