Results 211 to 220 of about 1,400,280 (330)

Achieving Nearly Zero-Energy Buildings through Renewable Energy Production-Storage Optimization

open access: green
Bhumitas Hongvityakorn   +3 more
openalex   +2 more sources

Magnetic and Structural Response Tuned by Coexisting Mn Concentration‐Dependent Phases in MnBi2Te4 Thin Film Grown on GaAs(001) by Molecular Beam Epitaxy

open access: yesAdvanced Functional Materials, EarlyView.
The study explores structural and magnetic properties of one of the most recent topological quantum materials (MnBi2Te4). The Mn‐poor structure leads to stacking faults (quintuple layer ‐ QL of Bi2Te3 formation instead of a septuple layer ‐ SL of MnBi2Te4), resulting in a coexistence between weak antiferromagnetism and ferromagnetism.
Wesley F. Inoch   +10 more
wiley   +1 more source

In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang   +19 more
wiley   +1 more source

Logic Gates Based on Skyrmions. [PDF]

open access: yesNanomaterials (Basel)
Shu Y   +5 more
europepmc   +1 more source

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Programmable DNA‐Peptide Hybrid Nanostructures for Potent Neutralization of Multiple Influenza a Virus Subtypes

open access: yesAdvanced Functional Materials, EarlyView.
A multivalent antiviral platform based on honeycomb‐shaped DNA nanostructures (HC–Urumin) is developed to enhance the potency and breadth of the host defense peptide Urumin. Through spatially patterned trimeric presentation, HC–Urumin disrupts influenza A virus entry, improves cell viability, and reduces disease severity in vivo‐offering a modular and ...
Saurabh Umrao   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy