Results 91 to 100 of about 148,550 (308)

Bioinspired Bromination Enables Extensible, Strain‐Stiffening Resilin Peptide Scaffolds with Tunable Degradation

open access: yesAdvanced Functional Materials, EarlyView.
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli   +6 more
wiley   +1 more source

High‐Yield Synthesis of Fe‐NC Electrocatalysts Using Mg2+ Templating and Schiff‐Base Porous Organic Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange   +11 more
wiley   +1 more source

Electrosynthesis of Bioactive Chemicals, From Ions to Pharmaceuticals

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses recent advances in electrosynthesis for biomedical and pharmaceutical applications. It covers key electrochemical materials enabling precise delivery of ions and small molecules for cellular modulation and disease treatment, alongside catalytic systems for pharmaceutical synthesis.
Gwangbin Lee   +4 more
wiley   +1 more source

Zinc oxide tetrapod sponges for environmental pollutant monitoring and degradation

open access: gold, 2022
Kyung-Taek Lee   +8 more
openalex   +1 more source

‘Oxygen Bound to Magnesium’ as High Voltage Redox Center Causes Sloping of the Potential Profile in Mg‐Doped Layered Oxides for Na‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Na‐ion batteries ‐ Impact of doping on the oxygen redox: The sloping potential of NaMg0.1Ni0.4Mn0.5O2 above 4.0 V is caused by a new redox center (arising from the ‘O bound to Mg’), having a higher potential but being more irreversible compared to the ‘O bound to Ni’.
Yongchun Li   +12 more
wiley   +1 more source

Zinc oxide nanoparticles mediate bacterial toxicity in Mueller-Hinton Broth via Zn2+

open access: yesFrontiers in Microbiology
As antibiotic resistance increases and antibiotic development dwindles, new antimicrobial agents are needed. Recent advances in nanoscale engineering have increased interest in metal oxide nanoparticles, particularly zinc oxide nanoparticles, as ...
Alexander J. Caron   +6 more
doaj   +1 more source

Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract [PDF]

open access: bronze, 2018
Asha Chaudhary   +3 more
openalex   +1 more source

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Modulating Surface‐Active Hydrogen for Facilitating Nitrate‐to‐Ammonia Electroreduction on Layered Double Hydroxides Nanosheets

open access: yesAdvanced Functional Materials, EarlyView.
The NiCuFe‐layered double hydroxides nanosheets are synthesized for facilitating nitrate‐to‐ammonia with a high ammonia yield of 1.64 mmol h−1 cm−2, Faradaic efficiency of 94.8% and stability for 15 cycles. The assembled Zn‐nitrate battery delivers a remarkable power density of 12.4 mW cm−2.
Bin Liu   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy