Skip to main content
  • 2043 Accesses

  • 3 Citations

Conclusion

Due to the absence of a unique center of rotation, the knee requires more complex geometry in its prosthetic replacement. The relative motions of the components are a combination of rolling and sliding, so causing a much more complex wear, whose debris remain trapped between articulating surfaces, producing three-body wear. Contact areas smaller than in total hip prosthesis can lead to more pronounced creep and greater possibility of local fatigue cracks developing. Where there is severe loss of articular cartilage but the normal bony structure is preserved, procedures that involve lowest resection of bone from both the femur and the tibia must be utilized, because the implant designs that require a great deal of excavation, so producing large cavities in the femur and in the tibia, leave relatively insufficient bone stock for revision or arthrodesis. Long stems require a large amount of intramedullary cement for fixation that may create difficulties in case of infection. If a prosthetic component becomes loose, the cement attached to it may abrade and destroy the surrounding bone and create an even larger cavity, which makes revision impossible or arthrodesis difficult to achieve. Finally, it is essential to restore the normal tibiofemoral valgus angle, because an eccentrically loaded tibial component on either the medial or lateral aspect can produce uneven wear and early loosening. So, jigs and guides which make it as easy as possible to resect the bone surfaces with precision have to be available. At present, there is a multitude of implants on the market. The selection of a prosthesis depends on many factors, including the surgeon’s preference and his familiarity with the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ainsworth, R., Farling, G., Bardos, D. 1977. An improved bearing material for joint replacement prostheses: Carbon fiber reinforced UHMW polyethylene, Trans Orthop. Res. Soc. 2, 120.

    Google Scholar 

  • Ambrosio, L., Carotenuto, G., Nicolais, L., Ronca, D. 1996. Degradation of explanted UHMW-PE components prostheses. Biomaterials 10(1–2), 15–23.

    Google Scholar 

  • Andriacchi, T.P., Galante, J.O., Fermier, B.S. 1982. The influence of total knee replacement design on walking and stair climbing, J. Bone Jt. Surg. 64A, 1328–1335.

    Google Scholar 

  • Bargren, J.H., Blaha, J.D., Freeman, M.A.R. 1983. Alignment in total knee arthroplasty: correlated biomechanical and clinical observations, Clin. Orthop. 173, 178–183.

    Google Scholar 

  • Bartel, D.L., Burstein, A.H., Santavicca, E.A., Insall, J.N. 1982. Performance of the tibial component in total knee replacement, J. Bone Jt. Surg. 64A, 1026–1033.

    Google Scholar 

  • Bartel, D.L., Burstein, A.H., Toda, M.D, Edwards, D.L. 1985. The effects of conformity and plastic thickness on contact stress in metal-backed plastic implants, J. Biomech. Eng. 107, 193–199.

    Article  Google Scholar 

  • Bartel, D.L., Bicknell, V.L., Wright, T.M. 1986. The effect of conformity, thickness and material stresses in ultra-high molecular weight components for total joint replacement, J. Bone Jt. Surg. 68A, 1041–1051.

    Google Scholar 

  • Bartel, D.L., Rawlinson, J.J., Burstein, A.H., Ranawatt, C.S., Flynn, W.F. 1995. Stresses in polyethylene components of contemporary total knee replacements, Clin. Orthop. 317, 76–82.

    Google Scholar 

  • Batheja, S.K., Andrews, E.H., Yarbrough, S.M. 1989. Radiation induced crystallinity in linear polyethylenes: Long term aging effects, Polym. J. 21, 739–750.

    Google Scholar 

  • Bayley, J.C., Scott, R.D., Ewald, F.C, Holmes, G.B. Jr. 1988. Metal-backed patellar component failure following total knee replacement, J. Bone Jt. Surg. 70A, 668–674.

    Google Scholar 

  • Binderglass, D.F., Cohen, J.L., Dorr, L.D. 1993. Patellar tilt and subluxation in total knee arthroplasty. Relationship to pain, fixation and design. Clin. Orthop. 286, 103–109.

    Google Scholar 

  • Blaha, J.D., Insler, H.P., Freeman, M.A.R. 1982. The fixation of a proximal tibial polyethylene prosthesis without cement, J. Bone Jt. Surg. 64B, 326–335.

    Google Scholar 

  • Blunn, G.W., Walker, P.S., Joshi, A., Hardinge, K. 1991. The dominance of cyclic sliding in producing wear in total knee replacements, Clin. Orthop. 273, 253–260.

    Google Scholar 

  • Cates, H.E., Ritter, M.A., Keating, E.M., Faris, P.M. 1993. Intramedullary versus extramedullary femoral alignment systems in total knee replacement. Clin. Orthop. 286, 32–39.

    Google Scholar 

  • Charnley, J. 1960. Anchorage of the femoral head prosthesis to the shaft of the femur, J. Bone Jt. Surg. 42B, 28–30.

    Google Scholar 

  • Charnley, J. 1970. Low friction arthroplasty, Clin. Orthop. 72, 7–21.

    Google Scholar 

  • Connelly, G.M., Rimnac, C.M., Wright, T.M., Hertzberg, R.W., Manson, J.A. 1984. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene, J. Orthop. Res. 2, 119–125.

    Article  Google Scholar 

  • Coventry, M.B., Finerman, G.H., Riley, L.H., Turner, R.H., Upshaw, J.E. 1972. A new geometric knee for total knee arthroplasty, Clin. Orthop. 83, 157–162.

    Google Scholar 

  • Denham, R.A, Bishop, R.E.D. 1978. Mechanics of the knee and problems in reconstructive surgery, J. Bone Jt. Surg. 60B, 308–309.

    Google Scholar 

  • Engelbrecht, E., Zippel, J. 1973. The sledge prosthesis “Model St. Georg”. Acta Orthop. Belg. 39, 203–209.

    Google Scholar 

  • Feng, E.L., Stulberg, D.S., Wixon, R.S. 1995. Progressive subluxation and polyethylene wear in total knee replacements with flat articular surfaces, Clin. Orthop. 205, 43–48.

    Google Scholar 

  • Figgie, H.E., Goldberg, V.M., Heiple, K.G., Moller, H.S., Gordon, N.H. 1989. The influence of tibial-patellofemoral location on function of the knee in patients with posterior stabilized condylar knee prostheses, J. Bone Jt. Surg. 68A, 1035–1040.

    Google Scholar 

  • Font-Rodriguez, D.E., Scuderi, G.R., Insall, J.N. 1997. Survivorship of cemented total knee arthroplasty, Clin. Orthop. 345, 79–86.

    Google Scholar 

  • Freeman, M.A.R., Swanson, S.A., Tood, R. 1973. Total replacement of the knee using the Freeman-Swanson knee prosthesis, Clin. Orthop. 94, 153–170.

    Google Scholar 

  • Glück, T. 1890. Die invaginationsmethode der osteo-und arthroplastik, Berl. Klin. Wochenschr. Circulation 33, 752.

    Google Scholar 

  • Goodfellow, J., O’Connor, J., 1978. The mechanics of the knee and the prosthesis design, J. J. Bone Jt. Surg. 60B, 358–369.

    Google Scholar 

  • Gunston, F.H. 1973. Polycentric knee arthroplasty, Clin. Orthop. 94, 128–135.

    Google Scholar 

  • Hirakawa, K., Bauer, T.W., Stulberg, B.N., Wilde, A.H., Borden, L.S. 1996. Characterization of debris adjacent to failed knee implants of 3 different designs, Clin. Orthop. 331, 151–158.

    Google Scholar 

  • Insall, J.N., Walker, P. 1976. Unicondylar knee replacement, Clin. Orthop. 120, 83–85.

    Google Scholar 

  • Insall, J.N., Ranawat, C.S., Scott, W.N., Walker, P. 1976a. Total condylar replacement-Preliminary report, Clin. Orthop. 120, 149–154.

    Google Scholar 

  • Insall, J.N., Ranawat, C.S., Aglietti, P., Shine, J. 1976b. A comparison of four models of total knee-replacement prostheses, J. Bone Jt. Surg. 58A, 754–765.

    Google Scholar 

  • Jones, B.C., Insall, J.N., Inglis, A.E., Ranawat, C.S. 1979. GUEPAR knee arthroplasty results and late complications, Clin. Orthop. 140, 145–152.

    Google Scholar 

  • Jones, W.N., Aufranc, O.E., Kermond, W.L. 1967. Mould arthroplasty of the knee, J. Bone Jt. Surg. 49A, 1022.

    Google Scholar 

  • Judet, J., Judet, R., Crepin, G.T. 1947. Essais de prothèse ostéoarticulaire, Presse Med. 52, 302.

    Google Scholar 

  • Kettelkamp, D.B., Nasca, R. 1973. Biomechanics and knee replacement arthroplasty, Clin. Orthop. 94, 8–14.

    Google Scholar 

  • Knutson, K., Lewold, S., Robertsson, O., Lidgren, L. 1994. The Swedish knee arthroplasty register, Acta Orthop. Scand. 65, 375–386.

    Google Scholar 

  • Lavai, J.P., McLeod, H.C., Freeman, M.A.R. 1983. Why not resurface the patella? J. Bone Jt. Surg. 65B, 448–451.

    Google Scholar 

  • Lewis, P.L., Rorabeck, C.H., Bourne, R.B. 1995. Screw osteolysis after cementless total knee replacement, Clin. Orthop. 321, 173–177.

    Google Scholar 

  • Li, E., Ritter, M.A. 1995. Total knee arthroplasty, J. Arthroplasty 10, 560–563.

    Article  Google Scholar 

  • MacIntosh, D. 1958. Hemiarthroplasty of the knee using a space occupying prosthesis for painful varus and valgus deformities, J.Bone Jt. Surg. 40A, 1431.

    Google Scholar 

  • MacIntosh, D.L. 1966. Arthroplasty of the knee, J. Bone Jt. Surg. 48B, 179.

    Google Scholar 

  • Manley, M.T., Kotzar, G., Stern, L.S., Wilde, A. 1987. Effects of repetitive loading on the integrity of porous coatings, Clin. Orthop. 217, 293–302.

    Google Scholar 

  • Maquet, P. 1967. Biomechanique du genou et gonarthrose, Rev. Chir. Orthop. 53, 111–138.

    Google Scholar 

  • Marmor, L. 1973. The modular knee, Clin. Orthop. 94, 242–248.

    Google Scholar 

  • Marmor, L. 1988. Unicompartmental arthroplasty of the knee with a minimum ten-year follow-up period, Clin. Orthop. 228, 171–177.

    Google Scholar 

  • Matthews, L.S., Sonstengard, D.A., Kaufer, H. 1973. The spherocentric knee, Clin. Orthop. 94, 234–241.

    Google Scholar 

  • McKee, G.K, Watson-Farrar, J. 1966. Replacement of arthritic hips by the McKee-Farrar prosthesis, J. Bone Jt. Surg. 48B, 245–249.

    Google Scholar 

  • McKeever, D. 1960, Tibial plateau prosthesis, Clin. Orthop. 18, 86–95.

    Google Scholar 

  • Miller, R.C. 1991. UHMW polyethylene, Modern Plastic, Mid-October Encyclopaedia Issue 67.

    Google Scholar 

  • Mochizuki, R.M., Schurman, D.J. 1979. Patellar complications following total knee arthroplasty. J. Bone Jt. Surg. 61A, 879–883.

    Google Scholar 

  • Morrey, B.F., Chao, E.Y.S. 1988. Fracture of the porous-coated metal tray of a biologically fixed knee prosthesis: Report of a case, Clin. Orthop. 228, 182–189.

    Google Scholar 

  • Murray, R.P., Hayes, W.C., Edwards, W.T., Harry, J.D. 1984. Mechanical properties of the subchondral plate and the metaphyseal shell, Trans. 30th Orthop. Res. Soc. 9, 197.

    Google Scholar 

  • Nolan, J.F., Bucknill, T.M. 1992. Aggressive granulomatous from polyethylene failure in an uncemented knee replacement. J. Bone Jt. Surg. 74B, 23–24.

    Google Scholar 

  • Pillar, R.M., Lee, J.M., Maniatopoulos, C. 1986. Observations on the effect of movement on bone ingrowth into porous-surfaced implants, Clin. Orthop. 208, 108–113.

    Google Scholar 

  • Ranawat, C.S. 1986. The patellofemoral joint in total condylar knee arthroplasty. Pros and cons based on five-to ten-year follow-up observations, Clin. Orthop. 205, 93–99.

    Google Scholar 

  • Ranawat, C.S., Rose, H.A. 1983. Total-condylar knee arthroplasty-A three to eight year follow-up, Proceedings of the American Academy of Orthopaedic Surgeons, Annual Meeting, Los Angeles, California.

    Google Scholar 

  • Ranawat, C.S., Wilde, A.H., Rover, G.D. 1976. Experience with the GUEPAR total knee prosthesis, Orthop. Rev. 5, 47–53.

    Google Scholar 

  • Ranawat, C.S., Flynn, W.F., Deshmukh, R.G. 1994. Impact of modern technique on long-term results of total condylar knee arthroplasty, Clin. Orthop. 309, 131–135.

    Google Scholar 

  • Riley, L.H. Jr. 1976. The evolution of total knee arthroplasty, Clin. Orthop. 120, 7–10.

    Google Scholar 

  • Rimnac, C.M., Klein, R.W., Betts, F., Wright, T.M. 1994. Post-irradiation aging of ultra-high molecular weight polyethylene, J. Bone Jt. Surg. 76A, 1052–1056.

    Google Scholar 

  • Ritter, M.A., Herbst, S.A., Keating, E.M., Faris, P.M., Meding, J.B. 1994. Long term survival analysis of a posterior cruciate retaining total condylar total knee arthroplasty, Clin. Orthop. 309, 136–145.

    Google Scholar 

  • Ritter, M.A., Worland, R., Saliski, J., Helphenstine, J.V., Edmondson, K.L., Keating, E.M., Faris, P.M, Meding, J.B. 1995. Flat-on-flat, nonconstrained compression molded polyethylene total knee replacement, Clin. Orthop. 321, 79–85.

    Google Scholar 

  • Stulberg, S.D., Stulberg, B.N., Hamati, Y., Tsao, A. 1988. Failure mechanism of metal-backed patellar component, Clin. Orthop. 236, 88–105.

    Google Scholar 

  • Tanner, M.G., Whiteside, L.A., White, S.E. 1995. Effect of polyethylene quality on wear in total knee arthroplasty, Clin. Orthop. 317, 83–88.

    Google Scholar 

  • Tew, M. and Waugh, W. 1985. Tibiofemoral alignment and results of knee replacement. J. Bone Jt. Surg. 67B, 551–556.

    Google Scholar 

  • Tria, A.J., Harwood, D.A., Alicea, J.A., Cody, R.P. 1994. Patellar fractures in posterior stabilized knee arthroplasty, Clin. Orthop. 299, 131–138.

    Google Scholar 

  • Walker, P.S. 1978. Human Joints and Their Artificial Replacements, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Walldius, B. 1954. Arthroplasty of the knee joint using an acrylic prosthesis, Acta Orthop. Scand. 23, 121–131.

    Google Scholar 

  • Wasielewski, R.C., Parks, N., Williams, I., Surprenant, H., Collier, J.P., Engh, G. 1997. Tibial insert undersurface as a contributing source of polyethylene wear debris, Clin. Orthop. 345, 53–59.

    Google Scholar 

  • Weightman, B., Light, D.A. 1985. A comparison of RCH 1000 and Hi-Fax 1900 ultra-high molecular weight polyethylene, Biomaterials 6, 177–183.

    Article  Google Scholar 

  • White, S.E., Paxson, R.D., Tanner, M.G., Whiteside, L.A. 1996. Effects of sterilisation on wear in total knee arthroplasty, Clin. Orthop. 331, 164–171.

    Google Scholar 

  • Whiteside, L.A. 1986. Wear in total knee arthroplasty, in: Biological Material and Mechanical Consideration of Joint Replacement (B.F. Morrey, ed.), pp. 253–260, Raven Press, New York.

    Google Scholar 

  • Windsor, R.E., Scuderi, G.R., Moran, M., Insall, J.N. 1989. Mechanism of failure of the femoral and tibial components in total knee arthroplasty, Clin. Orthop. 248, 15–23.

    Google Scholar 

  • Winter, D.A. 1983. Energy generation and absorption at the ankle and knee during fast, natural and slow cadences, Clin. Orthop. 175, 147–154.

    Google Scholar 

  • Wright, T.M. American Association of Orthopaedic Surgeons course. 1991. Total Knee Arthroplasty, Orlando, Florida, October.

    Google Scholar 

  • Wright, T.M., Fukubayashi, T., Burstein, A.H. 1981. The effect of carbon fiber reinforcement on contact area, contact pressure and time dependent deformation in polyethylene tibial components, J. Biomed. Mater. Res. 15, 719–730.

    Article  Google Scholar 

  • Wright, T.M., Burstein, A.H., Bartel, D.L. 1985. Retrieval analysis of total joint replacement components: a six-year experience, in: Proceedings of Second Symposium on Corrosion and Degradation of Implant Materials, pp. 415–428, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Wroblewski, B.M. 1979. Wear of high-density polyethylene on bone and cartilage, J. Bone Jt. Surg. 61B, 498–500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ronca, D., Guida, G. (2002). Knee Joint Replacements. In: Barbucci, R. (eds) Integrated Biomaterials Science. Springer, Boston, MA. https://doi.org/10.1007/0-306-47583-9_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-47583-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46678-6

  • Online ISBN: 978-0-306-47583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics