Skip to main content

Physical and Biological Emergence: Are They Different?

  • Conference paper
Systemics of Emergence: Research and Development
  • 2054 Accesses

  • 7 Citations

Abstract

In this paper we compare the features of models of emergence introduced within theoretical physics, mainly to account for phenomenology of second-order phase transitions, with the requirements coming from observations of biological self-organization. We argue that, notwithstanding the deep differences between biological and non-biological systems, the methods of theoretical physics could, in principle, account even for the main features of biological emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alfinito, E., Viglione, R. G., and Vitiello, G., 2001, The decoherence criterion, Modern Physics Letters B 15:127–136.

    Article  ADS  CAS  Google Scholar 

  • Amit, D. J., 1989, Modeling Brain Function. The World of Attractor Neural Networks, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Bedau, M. A., 1997, Weak emergence, Philosophical Perspectives 11:375–399.

    Google Scholar 

  • Behrman, E. C., Nash, L. R., Steck, J. E., Chandrashekar, V. G., and Skinner, S. R., 2000, Simulations of quantum neural networks, Information Sciences 128:257–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Belintsev, B. N., 1983, Dissipative structures and the problem of biological pattern formation, Soviet Physics Uspekhi 26:775–800.

    Article  MathSciNet  Google Scholar 

  • Beloussov, L. V., 1998, The Dynamic Architecture of Developing Organism, Kluwer, Dordrecht.

    Google Scholar 

  • Brading, K., and Castellani, E., eds., 2003, Symmetries in Physics: Philosophical Reflections, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Burgess, C. P., 2000, Goldstone and pseudo-Goldstone bosons in nuclear, particle and condensed-matter physics, Physics Reports 330:193–261.

    Article  ADS  CAS  Google Scholar 

  • Cardy, J. L., 1996, Scaling and Renormalization in Statistical Physics, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Cardy, J. L., and Täuber, U. C, 1998, Field theory of branching and annihilating random walks, Journal of Statistical Physics 90:1–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaichian, M., and Demichev, A., 2001, Path Integrals in Physics. Volume 2: Quantum Field Theory, Statistical Physics and other modern applications, IOP Press, Bristol, UK.

    Google Scholar 

  • Chua, L. O., and Roska, T., 1993, The CNN Paradigm, IEEE Transactions on Circuits and Systems 40:147–156.

    MathSciNet  MATH  Google Scholar 

  • Chua, L. O., and Yang, L., 1988, Cellular Neural Networks: Theory and applications, IEEE Transactions on Circuits and Systems 35:1257–1290.

    Article  MathSciNet  MATH  Google Scholar 

  • Cruchtfield, J. P., 1994, The Calculi of Emergence: Computation, Dynamics and Induction, Physica D 75:11–54.

    Article  ADS  Google Scholar 

  • Doi, M., 1976, Second quantization representation for classical many-particle system, Journal of Physics A 9:1465–1477.

    Article  Google Scholar 

  • Domany, E., Van Hemmen, J. L., and Schulten, K., eds., 1996, Models of Neural Networks III: Association, Generalization, and Representation (Physics of Neural Networks), Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Dotsenko, V., 1994, An Introduction to the Theory of Spin Glasses and Neural Networks, World Scientific, Singapore.

    Google Scholar 

  • Fernández, A., 1985, Global instability of a monoparametric family of vector fields representing the unfolding of a dissipative structure, Journal of Mathematical Physics, 26:2632–2633.

    Article  MathSciNet  ADS  Google Scholar 

  • Fogedby, H. C, 1998, Soliton approach to the noisy Burgers equation. Steepest descent method, Physical Review E 57:4943–4968.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Fogedby, H. C., and Brandenburg, A., 2002, Solitons in the noisy Burgers equation, Physical Review E 66: 016604, 1–9.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Glendinning, P., 1994, Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Goldenfeld, N., 1992, Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Guckenheimer, J., and Holmes, P., 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer, Berlin.

    Google Scholar 

  • Györgyi, G., 2001, Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron, Physics Reports 342:263–392.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Haken, H., 1978, Synergetics. An Introduction, Springer, Berlin.

    Google Scholar 

  • Haken, H., 1983, Advanced Synergetics, Springer, Berlin.

    Google Scholar 

  • Haken, H., 1988, Information and Self-Organization. A Macroscopic Approach to Complex Systems, Springer, Berlin.

    Google Scholar 

  • Huang, K., 1998, Quantum Field Theory: From Operators to Path Integrals, Wiley, New York.

    Google Scholar 

  • Iooss, G., and Joseph, D. D., 1981, Elementary Stability and Bifurcation Theory, Springer, New York.

    Google Scholar 

  • Itzykson, C., and Drouffe, J.-M., 1989a, Statistical Field Theory: Volume 1, from Brownian Motion to Renormalization and Lattice Gauge Theory, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Itzykson, C., and Drouffe, J.-M., 1989b, Statistical Field Theory: Volume 2, Strong Coupling, Monte Carlo methods, Conformal Field Theory and Random Systems, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Itzykson, C., and Zuber, J. B., 1986, Quantum Field Theory, McGraw-Hill, Singapore.

    Google Scholar 

  • Kozek, T., Chua, L. O., Roska, T., Wolf, D., Tezlaff, R., Puffer, F., and Lotz, K., 1995, Simulating nonlinear waves and partial differential equations via CNN — Part II: Typical examples, IEEE Transactions on Circuits and Systems 42:816–820.

    Article  Google Scholar 

  • Jibu, M., and Yasue, K., 2004, Quantum brain dynamics and Quantum Field Theory, in: G. G. Globus, K. H. Pribram and G. Vitello, eds., Brain and Being. At the Boundary Between Science, Philosophy, Language and Arts, Benjamins, Amsterdam, pp. 267–290.

    Google Scholar 

  • Lahiri, A., and Pal, P. B., 2001, A First Book of Quantum Field Theory, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Mikhailov, A. S., 1990, Foundations of Synergetics I. Distributed Active Systems, Springer, Berlin.

    Google Scholar 

  • Mikhailov, A. S., and Loskutov, A, Yu., 1996, Foundations of Synergetics II. Chaos and Noise, 2nd revised edition, Springer, Berlin.

    Google Scholar 

  • Mori, H., and Kuramoto, Y., 2001, Dissipative Structures and Chaos, Springer, Berlin.

    Google Scholar 

  • Narayanan, A., and Menneer, T., 2000, Quantum artificial neural network architectures and components, Information Sciences 128:231–255.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson E., 1967, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Nicolis, G., and Prigogine, I., 1977, Self-organization in Nonequilibrium Systems, Wiley, New York.

    Google Scholar 

  • Nitzan, A., and Ortoleva, P., 1980, Scaling and Ginzburg criteria for critical bifurcations in nonequilibrium reacting systems, Physical Review A 21:1735–1755.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Pastor-Satorras, R., and Solé, R. V., 2001, Field theory of a reaction-diffusion model of quasispecies dynamics, Physical Review E 64:051909, 1–7.

    Article  ADS  CAS  Google Scholar 

  • Parisi, G., 1998, Statistical Field Theory, (New edition), Perseus Books, New York.

    Google Scholar 

  • Peliti, L., 1985, Path integral approach to birth-death processes on a lattice, Journal de Physique 46:1469–1483.

    Article  Google Scholar 

  • Peskin, M. E., and Schroeder, D. V., 1995, An Introduction to Quantum Field Theory, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Pessa, E., 2000, Cognitive Modelling and Dynamical Systems Theory, La Nuova Critica 35:53–93.

    Google Scholar 

  • Pessa, E., 2004, Quantum connectionism and the emergence of cognition, in: G. G. Globus, K. H. Pribram and G. Vitello, eds., Brain and Being. At the Boundary Between Science, Philosophy, Language and Arts, Benjamins, Amsterdam, pp. 127–145.

    Google Scholar 

  • Pessa, E., and Vitiello, G., 2004a, Quantum noise, entanglement and chaos in the Quantum Field Theory of Mind/Brain states, Mind and Matter 1:59–79.

    Google Scholar 

  • Pessa, E., and Vitiello, G., 2004b, Quantum noise induced entanglement and chaos in the dissipative quantum model of brain, International Journal of Modern Physics B 18:841–858.

    Article  ADS  Google Scholar 

  • Ronald, E. M. A., Sipper, M., and Capcarrère, M. S., 1999, Design, observation, surprise! A test of emergence, Artificial Life 5:225–239.

    Article  PubMed  CAS  Google Scholar 

  • Roska, T., Chua, L.O., Wolf, D., Kozek, T., Tezlaff, R., and Puffer, F., 1995, Simulating nonlinear waves and partial differential equations via CNN — Part I: Basic techniques, IEEE Transactions on Circuits and Systems 42:807–815.

    Article  Google Scholar 

  • Rueger, A., 2000, Physical emergence, diachronic and synchronic, Synthese 124:297–322.

    Article  MATH  MathSciNet  Google Scholar 

  • Saad, D., ed., 1998, On-line Learning in Neural Networks, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Sattinger, D. H., 1978, Topics in Stability and Bifurcation Theory, Springer, Berlin.

    Google Scholar 

  • Sattinger, D. H., 1980, Bifurcation and symmetry breaking in applied mathematics, Bulletin of the American Mathematical Society 3:779–819.

    Article  MATH  MathSciNet  Google Scholar 

  • Scott, A., 2003, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Sewell, G. L., 1986, Quantum Theory of Collective Phenomena, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Sewell, G. L., 2002, Quantum Mechanics and its Emergent Macrophysics, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Stein, D. L., 1980, Dissipative structures, broken symmetry, and the theory of equilibrium phase transitions, Journal of Chemical Physics 72:2869–2874.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Tegmark, M., 2000, Why the brain is probably not a quantum computer, Information Sciences 128:155–179.

    Article  MATH  MathSciNet  Google Scholar 

  • Umezawa, H., 1993, Advanced Field Theory. Micro, Macro, and Thermal Physics, American Institute of Physics, New York.

    Google Scholar 

  • Vahala, G., Yepez, J., and Vahala, L., 2003, Quantum lattice gas representation of some classical solitons, Physics Letters A 310:187–196.

    Article  MathSciNet  ADS  CAS  MATH  Google Scholar 

  • Vanderbauwhede, A., 1982, Local Bifurcation and Symmetry, Pitman, Boston.

    Google Scholar 

  • Vitiello, G., 2001, My Double Unveiled, Benjamins, Amsterdam.

    Google Scholar 

  • Yepez, J., 2002, Quantum lattice-gas model for the Burgers equation, Journal of Statistical Physics 107:203–224.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Pessa, E. (2006). Physical and Biological Emergence: Are They Different?. In: Minati, G., Pessa, E., Abram, M. (eds) Systemics of Emergence: Research and Development. Springer, Boston, MA. https://doi.org/10.1007/0-387-28898-8_25

Download citation

Publish with us

Policies and ethics