Abstract
The modern way of life has dramatically affected our biological rhythms. Circadian rhythms, which are generated by an endogenous circadian clock, are observed in a large number of physiological functions including metabolism. Proper peripheral clock synchronization by different signals including appropriate feeding/fasting cycles is essential to coordinate and temporally gate metabolic processes. In this chapter, we emphasize the importance of nutrient sensing by peripheral clocks and highlight the major role of peripheral and central clock communication to locally regulate metabolic processes and ensure optimal energy storage and expenditure. As a consequence, changes in eating behavior and/or bedtime, as occurs upon shift work and jet lag, have direct consequences on metabolism and participate in the increasing prevalence of obesity and associated metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. In this setting, time-restricted feeding has been suggested as an efficient approach to ameliorate metabolic parameters and control body weight.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J, Wang M, Han X, Asher G (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19
Adlanmerini M, Nguyen HC, Krusen BM, Teng CW, Geisler CE, Peed LC, Carpenter BJ, Hayes MR, Lazar MA (2021) Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice. J Clin Invest 131
Akashi M, Tsuchiya Y, Yoshino T, Nishida E (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 22
Arble D, Bass J, Laposky A, Vitaterna M, Turek F (2009) Circadian timing of food intake contributes to weight gain. Obes Silver Spring Md 17
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328
Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953
Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347
Bandín C, Scheer F, Luque A, Ávila-Gandía V, Zamora S, Madrid J, Gómez-Abellán P, Garaulet M (2015) Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int J Obes (Lond) 2005:39
Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, Gheeraert C, Ploton M, Maréchal X, Dubois-Chevalier J et al (2018) Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proc Natl Acad Sci U S A 115:E11033–E11042
Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F, Krueger JM (2004) Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 287:R1071–R1079
Bray M, Tsai J, Villegas-Montoya C, Boland B, Blasier Z, Egbejimi O, Kueht M, Young M (2010) Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond) 2005:34
Broussard JL, Van Cauter E (2016) Disturbances of sleep and circadian rhythms: novel risk factors for obesity. Curr Opin Endocrinol Diabetes Obes 23:353–359
Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA (2012) Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657–667
Camacho F, Cilio M, Guo Y, Virshup D, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Keesler G (2001) Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 489
Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan N, Michalik L, Delaunay F, Wahli W, Laudet V (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol Baltim Md 20
Caratti G, Iqbal M, Hunter L, Kim D, Wang P, Vonslow RM, Begley N, Tetley AJ, Woodburn JL, Pariollaud M et al (2018) REVERBa couples the circadian clock to hepatic glucocorticoid action. J Clin Invest 128:4454–4471
Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo J, Sassone-Corsi P (2005) Circadian clock control by SUMOylation of BMAL1. Science 309
Carlson O, Martin B, Stote K, Golden E, Maudsley S, Najjar S, Ferrucci L, Ingram D, Longo D, Rumpler W et al (2007) Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56
Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20
Chaix A, Lin T, Le H, Chang M, Panda S (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29
Challet E (2019) The circadian regulation of food intake. Nat Rev Endocrinol 15
Chen P, Han Z, Yang P, Zhu L, Hua Z, Zhang J (2010) Loss of clock gene mPer2 promotes liver fibrosis induced by carbon tetrachloride. Hepatol Res Off J Jpn Soc Hepatol 40:1117–1127
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong L-W, DiTacchio L, Atkins AR, Glass CK et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–127
Chooi Y, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92
Crosby P, Hamnett R, Putker M, Hoyle N, Reed M, Karam C, Maywood E, Stangherlin A, Chesham J, Hayter E et al (2019) Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell:177
Crowther M, Ferguson S, Vincent G, Reynolds A (2021) Non-pharmacological interventions to improve chronic disease risk factors and sleep in shift workers: a systematic review and meta-analysis. Clocks Sleep 3
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14
Dang F, Sun X, Ma X, Wu R, Zhang D, Chen Y, Xu Q, Wu Y, Liu Y (2016) Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat Commun 7:12696
Delezie J, Dumont S, Dardente H, Oudart H, GrÕchez-Cassiau A, Klosen P, Teboul M, Delaunay F, PÕvet P, and Challet E. (2012). The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J: 26, 3321–3335
de Mello A, Costa A, Engel J, Rezin G (2018) Mitochondrial dysfunction in obesity
Depner C, Melanson E, McHill A, Wright K (2018) Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. Proc Natl Acad Sci U S A 115
Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125
Drake C, Roehrs T, Richardson G, Walsh J, Roth T (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27
Duffy J, Cain S, Chang A, Phillips A, Münch M, Gronfier C, Wyatt J, Dijk D, Wright K, Czeisler C (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A 108(Suppl 3)
Dyar KA, Ciciliot S, Wright LE, Biensø RS, Tagliazucchi GM, Patel VR, Forcato M, Paz MIP, Gudiksen A, Solagna F et al (2014) Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 3:29–41
Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D, Jastroch M, Schneider S, de Mateo S, Cervantes M et al (2018a) Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174:1571–1585.e11
Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, Quagliarini F, Kleinert M, Fischer K, Eichmann TO et al (2018b) Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol 16:e2005886
Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155:1464–1478
Eide E, Kang H, Crapo S, Gallego M, Virshup D (2005) Casein kinase I in the mammalian circadian clock. Methods Enzymol 393
Emilia I, Farrell GC, Graham R, Pauline H, Richard K, Isabelle L (2003) Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatol Baltim Md 38:123–132
Espitia-Bautista E, Velasco-Ramos M, Osnaya-Ramírez I, Ángeles-Castellanos M, Buijs R, Escobar C (2017) Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism 72
Ferraz-Bannitz R, Beraldo R, Coelho P, Moreira A, Castro M, Foss-Freitas M (2021) Circadian misalignment induced by chronic night shift work promotes endoplasmic reticulum stress activation impacting directly on human metabolism. Biology 10
Fustin J-M, Doi M, Yamada H, Komatsu R, Shimba S, Okamura H (2012) Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 1:341–349
Gabel K, Hoddy K, Haggerty N, Song J, Kroeger C, Trepanowski J, Panda S, Varady K (2018) Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging 4
Gallego M, Kang H, Virshup D (2006) Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J 399
Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, Li L, Cao S, Dong X, Gong Y et al (2015) Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med 72:72–78
Gao Y, Gan T, Jiang L, Yu L, Tang D, Wang Y, Li X, Ding G (2020) Association between shift work and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of observational studies. Chronobiol Int 37:29–46
Garaulet M, Ordovás J, Madrid J (2010) The chronobiology, etiology and pathophysiology of obesity. Int J Obes (Lond) 2005:34
Garaulet M, Gómez-Abellán P, Alburquerque-Béjar J, Lee Y, Ordovás J, Scheer F (2013) Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond) 2005:37
Gavrila A, Peng C-K, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS (2003) Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 88:2838–2843
Gekakis N, Staknis D, Nguyen H, Davis F, Wilsbacher L, King D, Takahashi J, Weitz C (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280
Gill S, Panda S (2015) A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab 22
Gómez-Abellán P, Gómez-Santos C, Madrid JA, Milagro FI, Campion J, Martínez JA, Ordovás JM, Garaulet M (2010) Circadian expression of adiponectin and its receptors in human adipose tissue. Endocrinology 151:115–122
Greenwell B, Trott A, Beytebiere J, Pao S, Bosley A, Beach E, Finegan P, Hernandez C, Menet J (2019) Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep 27
Grimaldi B, Bellet M, Katada S, Astarita G, Hirayama J, Amin R, Granneman J, Piomelli D, Leff T, Sassone-Corsi P (2010) PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab 12
Guan D, Xiong Y, Trinh TM, Xiao Y, Hu W, Jiang C, Dierickx P, Jang C, Rabinowitz JD, Lazar MA (2020) The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 369:1388–1394
Guillaumond F, Dardente H, Giguère V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20
Harfmann B, Schroder E, Kachman M, Hodge B, Zhang X, Esser K (2016) Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle 6:12
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong E, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick J et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15
Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, Marks F, Sliney D, Hunt CE, Hirota T et al (2017) Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis 3:9
He B, Nohara K, Park N, Park Y, Guillory B, Zhao Z, Garcia J, Koike N, Lee C, Takahashi J et al (2016) The small molecule Nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 23(4):610–621
Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama K, Fukada Y (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152
Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450
Hodge B, Wen Y, Riley L, Zhang X, England J, Harfmann B, Schroder E, Esser K (2015) The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle 5:17
Hunter AL, Pelekanou CE, Adamson A, Downton P, Barron NJ, Cornfield T, Poolman TM, Humphreys N, Cunningham PS, Hodson L et al (2020) Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proc Natl Acad Sci U S A 117:25869–25879
Hunter AL, Pelekanou CE, Barron NJ, Northeast RC, Grudzien M, Adamson AD, Downton P, Cornfield T, Cunningham PS, Billaud J-N et al (2021) Adipocyte NR1D1 dictates adipose tissue expansion during obesity. Elife 10:e63324
Hutchison A, Regmi P, Manoogian E, Fleischer J, Wittert G, Panda S, Lk H (2019) Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obes Silver Spring Md 27
Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL et al (2015) Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22:709–720
Jakubowicz D, Barnea M, Wainstein J, Froy O (2013) High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obes Silver Spring Md 21
Jakubowicz D, Wainstein J, Ahren B, Landau Z, Bar-Dayan Y, Froy O (2015) Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care 38
Kaasik K, Kivimäe S, Allen J, Chalkley R, Huang Y, Baer K, Kissel H, Burlingame A, Shokat K, Ptáček L et al (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17
Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58
Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L (2015) Circadian dysfunction induces leptin resistance in mice. Cell Metab 22:448–459
Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, Katchy CA, Lee C, Moore DD, Fu L (2016) Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30:909–924
Kivimäki M, Batty G, Hublin C (2011) Shift work as a risk factor for future type 2 diabetes: evidence, mechanisms, implications, and future research directions. PLoS Med 8
Kohsaka A, Laposky A, Ramsey K, Estrada C, Joshu C, Kobayashi Y, Turek F, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6
Koronowski KB, Kinouchi K, Welz P-S, Smith JG, Zinna VM, Shi J, Samad M, Chen S, Magnan CN, Kinchen JM et al (2019) Defining the Independence of the liver circadian clock. Cell 177:1448–1462.e14
Lamia KA, Storch K-F, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172–15177
Lamia K, Sachdeva U, DiTacchio L, Williams E, Alvarez J, Egan D, Vasquez D, Juguilon H, Panda S, Shaw R et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326
Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–556
Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20
Lee H, Chen R, Kim H, Etchegaray J-P, Weaver DR, Lee C (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci U S A 108:16451–16456
Lemberger T, Saladin R, Vázquez M, Assimacopoulos F, Staels B, Desvergne B, Wahli W, Auwerx J (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271:1764–1769
Li M-D, Ruan H-B, Hughes ME, Lee J-S, Singh JP, Jones SP, Nitabach MN, Yang X (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310
Licinio J, Mantzoros C, Negrão AB, Cizza G, Wong ML, Bongiorno PB, Chrousos GP, Karp B, Allen C, Flier JS et al (1997) Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 3:575–579
Lim YC, Hoe VCW, Darus A, Bhoo-Pathy N (2018) Association between night-shift work, sleep quality and metabolic syndrome. Occup Environ Med 75:716–723
Manella G, Sabath E, Aviram R, Dandavate V, Ezagouri S, Golik M, Adamovich Y, Asher G (2021) The liver-clock coordinates rhythmicity of peripheral tissues in response to feeding. Nat Metab 3:829–842
Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631
Marcheva B, Perelis M, Weidemann BJ, Taguchi A, Lin H, Omura C, Kobayashi Y, Newman MV, Wyatt EJ, McNally EM et al (2020) A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes Dev 34:1089–1105
Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T (2014) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16
Masri S, Sassone-Corsi P (2018) The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 24
Maury E, Navez B, Brichard SM (2021) Circadian clock dysfunction in human omental fat links obesity to metabolic inflammation. Nat Commun 12:2388
Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F, Waridel P, Quadroni M, Gachon F, Naef F (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 111
Mayeuf-Louchart A, Thorel Q, Delhaye S, Beauchamp J, Duhem C, Danckaert A, Lancel S, Pourcet B, Woldt E, Boulinguiez A et al (2017) Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass. Sci Rep 7:14383
Milić S, Lulić D, Štimac D (2014) Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 20:9330–9337
Minokoshi Y, Kim Y-B, Peroni OD, Fryer LGD, Müller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343
Mohawk J, Green C, Takahashi J (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35
Moore R, Eichler V (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206
Mukherji A, Kobiita A, Chambon P (2015a) Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci U S A 112
Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy M, Chambon P (2015b) Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A 112
Mukherji A, Bailey SM, Staels B, Baumert TF (2019) The circadian clock and liver function in health and disease. J Hepatol 71:200–211
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340
Neufeld-Cohen A, Robles M, Aviram R, Manella G, Adamovich Y, Ladeuix B, Nir D, Rousso-Noori L, Kuperman Y, Golik M et al (2016) Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A 113(12):E1673–E1682
Okabe T, Chavan R, Fonseca Costa SS, Brenna A, Ripperger JA, Albrecht U (2016) REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor. J Cell Sci 129:4143–4154
Osaki Y, Kuwahara K, Hu H, Nakagawa T, Yamamoto S, Honda T, Mizoue T, Japan Epidemiology Collaboration on Occupational Health Study Group (2021) Shift work and the onset of type 2 diabetes: results from a large-scale cohort among Japanese workers. Acta Diabetol 58:1659–1664
Panda S, Antoch M, Miller B, Su A, Schook A, Straume M, Schultz P, Kay S, Takahashi J, Hogenesch J (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109
Paschos GK, Ibrahim S, Song W-L, Kunieda T, Grant G, Reyes TM, Bradfield CA, Vaughan CH, Eiden M, Masoodi M et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18:1768–1777
Peek C, Affinati A, Ramsey K, Kuo H, Yu W, Sena L, Ilkayeva O, Marcheva B, Kobayashi Y, Omura C et al (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342(6158):1243417
Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C et al (2015) Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350:aac4250
Petrenko V, Gandasi NR, Sage D, Tengholm A, Barg S, Dibner C (2020) In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis. Proc Natl Acad Sci U S A 117:2484–2495
Pietroiusti A, Neri A, Somma G, Coppeta L, Iavicoli I, Bergamaschi A, Magrini A (2010) Incidence of metabolic syndrome among night-shift healthcare workers. Occup Environ Med 67:54–57
Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260
Rakshit K, Matveyenko A (2021) Induction of core circadian clock transcription factor Bmal1 enhances β-cell function and protects against obesity-induced glucose intolerance. Diabetes 70(1):143–154
Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC (2018) mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 14:e1007369
Ramirez-Plascencia O, Saderi N, Escobar C, Salgado-Delgado R (2017) Feeding during the rest phase promotes circadian conflict in nuclei that control energy homeostasis and sleep-wake cycle in rats. Eur J Neurosci 45
Raspé E, Duez H, Mansén A, Fontaine C, Fiévet C, Fruchart J-C, Vennström B, Staels B (2002) Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription. J Lipid Res 43:2172–2179
Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, Lilley KS, Kyriacou CP, Hastings MH (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatol Baltim Md 45:1478–1488
Reischl S, Kramer A (2011) Kinases and phosphatases in the mammalian circadian clock. FEBS Lett 585:1393–1399
Reppert S, Weaver D (2002) Coordination of circadian timing in mammals. Nature 418
Rizza S, Luzi A, Mavilio M, Ballanti M, Massimi A, Porzio O, Magrini A, Hannemann J, Menghini R, Lehrke M et al (2021) Alterations in Rev-ERBα/BMAL1 ratio and glycated hemoglobin in rotating shift workers: the EuRhythDia study. Acta Diabetol 58:1111–1117
Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22:939–943
Rudic RD, McNamara P, Curtis A-M, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377
Ruiter M, La Fleur SE, van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM (2003) The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52:1709–1715
Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B, Auwerx J (1995) Transient increase in obese gene expression after food intake or insulin administration. Nature 377:527–529
Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs R, Escobar C (2010) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151
Sardon Puig L, Pillon NJ, Näslund E, Krook A, Zierath JR (2020) Influence of obesity, weight loss, and free fatty acids on skeletal muscle clock gene expression. Am J Physiol Endocrinol Metab 318:E1–E10
Scheer F, Hilton M, Mantzoros C, Shea S (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli L, Witzig M, Ishihara N, Mihara K, Ripperger J, Albrecht U et al (2018) Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab 27(3):657–666.e5
Schmutz I, Ripperger J, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24
Schmutz I, Wendt S, Schnell A, Kramer A, Mansuy I, Albrecht U (2011) Protein phosphatase 1 (PP1) is a post-translational regulator of the mammalian circadian clock. PLoS One 6
Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O (2012) Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J Off Publ Fed Am Soc Exp Biol 26
Shostak A, Meyer-Kovac J, Oster H (2013) Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 62:2195–2203
Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5:253–261
Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493
Stote K, Baer D, Spears K, Paul D, Harris G, Rumpler W, Strycula P, Najjar S, Ferrucci L, Ingram D et al (2007) A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr 85
Sundaram S, Yan L (2016) Time-restricted feeding reduces adiposity in mice fed a high-fat diet. Nutr Res 36
Sutton E, Beyl R, Early K, Cefalu W, Ravussin E, Peterson C (2018) Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 27
Takano A, Isojima Y, Nagai K (2004) Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Chem 279
Tasaka Y, Inoue S, Maruno K, Hirata Y (1980) Twenty-four-hour variations of plasma pancreatic polypeptide, insulin and glucagon in normal human subjects. Endocrinol Jpn 27:495–498
Torra IP, Tsibulsky V, Delaunay F, Saladin R, Laudet V, Fruchart JC, Kosykh V, Staels B (2000) Circadian and glucocorticoid regulation of Rev-erbalpha expression in liver. Endocrinology 141:3799–3806
Tsang AH, Koch CE, Kiehn J-T, Schmidt CX, Oster H (2020) An adipokine feedback regulating diurnal food intake rhythms in mice. Elife 9
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308:1043–1045
Um J, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung J (2007) Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem 282
Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS (1991) Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 88:934–942
van Moorsel D, Hansen J, Havekes B, Scheer F, Jörgensen J, Hoeks J, Schrauwen-Hinderling V, Duez H, Lefebvre P, Schaper N et al (2016) Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab 5(8):635–645
Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S (2021) Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. Sci Adv 7
Villanueva J, Livelo C, Trujillo A, Chandran S, Woodworth B, Andrade L, Le H, Manor U, Panda S, Melkani G (2019) Time-restricted feeding restores muscle function in drosophila models of obesity and circadian-rhythm disruption. Nat Commun 10
Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A 106
Wang H, van Spyk E, Liu Q, Geyfman M, Salmans M, Kumar V, Ihler A, Li N, Takahashi J, Andersen B (2017) Time-restricted feeding shifts the skin circadian clock and alters UVB-induced DNA damage. Cell Rep 20
Weber F, Hung H, Maurer C, Kay S (2006) Second messenger and Ras/MAPK signalling pathways regulate CLOCK/CYCLE-dependent transcription. J Neurochem 98
Wefers J, van Moorsel D, Hansen J, Connell N, Havekes B, Hoeks J, van Marken Lichtenbelt W, Duez H, Phielix E, Kalsbeek A et al (2018) Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc Natl Acad Sci U S A 115
Wefers J, Connell NJ, Fealy CE, Andriessen C, de Wit V, van Moorsel D, Moonen-Kornips E, Jörgensen JA, Hesselink MKC, Havekes B et al (2020) Day-night rhythm of skeletal muscle metabolism is disturbed in older, metabolically compromised individuals. Mol Metab 41:101050
Wehrens S, Christou S, Isherwood C, Middleton B, Gibbs M, Archer S, Skene D, Johnston J (2017) Meal timing regulates the human circadian system. Curr Biol 27
Wilkinson M, Zadourian A, Lo H, Fakhouri S, Shoghi A, Wang X, Fleischer JG, Navlakha S, Panda S, Taub PR (2020) Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 31
Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MKC, Paquet C, Delhaye S, Shin Y et al (2013) Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 19:1039–1046
Wolff G, Esser K (2012) Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc 44(9):1663–1670
Yamanaka Y, Honma S, Honma K (2008) Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles. Genes Cells 13(5):497–507
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946
Yang X, Downes M, Yu R, Bookout A, He W, Straume M, Mangelsdorf D, Evans R (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126
Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, Yamamoto S, Sakurai M, Oike H, Wada N et al (2016) Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism 65
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatol Baltim Md 64:73–84
Zarrinpar A, Chaix A, Yooseph S, Panda S (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20
Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156
Zhang R, Lahens N, Ballance H, Hughes M, Hogenesch J (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111
Zhang Y, Fang B, Emmett M, Damle M, Sun Z, Feng D, Armour S, Remsberg J, Jager J, Soccio R et al (2015) GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348
Zhang Y, Fang B, Damle M, Guan D, Li Z, Kim YH, Gannon M, Lazar MA (2016) HNF6 and Rev-erbα integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms. Genes Dev 30:1636–1644
Funding
Some of our work included in this review manuscript was supported by the Fondation pour la Recherche Médicale (FRM, EQU202003010310), INSERM, the Région Hauts-de-France/FEDER (Chronoregeneration), Association Francaise contre les Myopathies (AFM), Fondation de France and the Société Francophone du Diabète (SFD)-ABBOTT DIABETES CARE and SFD-SERVIER. This project is cofounded by the European Union under the European Region Development Fund (ERDF) and by the Hauts de France Region Council (contract_20000007), the MEL (contract-2020-ESR-02) and the French State (contract n°2019-R3-CTRL_IPL_Phase3). This project is cofounded by ERDF and by the Hauts de France Region Council (contract_20002842), the MEL (contract-2020-ESR-06) and the French State (contract n°2020-R3-CTRL_IPL_Phase4). This project is co-funded by the Agence Nationale pour la Recherche (ANR) (ANR-19-CE15-0033-01, ANR-20-CE14-0035). This work was supported by the Agence Nationale de la Recherche (ANR) grants « European Genomic Institute for Diabetes » E.G.I.D, ANR-10-LABX-0046, a French State fund managed by ANR under the frame program Investissements d’Avenir I-SITE ULNE/ANR-16-IDEX-0004 ULNE. BS is a recipient of an Advance ERC Grant (694717). The funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sebti, Y., Hebras, A., Pourcet, B., Staels, B., Duez, H. (2022). The Circadian Clock and Obesity. In: Eckel, J., Clément, K. (eds) From Obesity to Diabetes. Handbook of Experimental Pharmacology, vol 274. Springer, Cham. https://doi.org/10.1007/164_2021_579
Download citation
DOI: https://doi.org/10.1007/164_2021_579
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99994-0
Online ISBN: 978-3-030-99995-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)