Skip to main content

The Circadian Clock and Obesity

  • Chapter
  • First Online:
From Obesity to Diabetes

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 274))

Abstract

The modern way of life has dramatically affected our biological rhythms. Circadian rhythms, which are generated by an endogenous circadian clock, are observed in a large number of physiological functions including metabolism. Proper peripheral clock synchronization by different signals including appropriate feeding/fasting cycles is essential to coordinate and temporally gate metabolic processes. In this chapter, we emphasize the importance of nutrient sensing by peripheral clocks and highlight the major role of peripheral and central clock communication to locally regulate metabolic processes and ensure optimal energy storage and expenditure. As a consequence, changes in eating behavior and/or bedtime, as occurs upon shift work and jet lag, have direct consequences on metabolism and participate in the increasing prevalence of obesity and associated metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. In this setting, time-restricted feeding has been suggested as an efficient approach to ameliorate metabolic parameters and control body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J, Wang M, Han X, Asher G (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19

    Google Scholar 

  • Adlanmerini M, Nguyen HC, Krusen BM, Teng CW, Geisler CE, Peed LC, Carpenter BJ, Hayes MR, Lazar MA (2021) Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice. J Clin Invest 131

    Google Scholar 

  • Akashi M, Tsuchiya Y, Yoshino T, Nishida E (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 22

    Google Scholar 

  • Arble D, Bass J, Laposky A, Vitaterna M, Turek F (2009) Circadian timing of food intake contributes to weight gain. Obes Silver Spring Md 17

    Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  CAS  PubMed  Google Scholar 

  • Bandín C, Scheer F, Luque A, Ávila-Gandía V, Zamora S, Madrid J, Gómez-Abellán P, Garaulet M (2015) Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int J Obes (Lond) 2005:39

    Google Scholar 

  • Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, Gheeraert C, Ploton M, Maréchal X, Dubois-Chevalier J et al (2018) Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proc Natl Acad Sci U S A 115:E11033–E11042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F, Krueger JM (2004) Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 287:R1071–R1079

    Article  CAS  PubMed  Google Scholar 

  • Bray M, Tsai J, Villegas-Montoya C, Boland B, Blasier Z, Egbejimi O, Kueht M, Young M (2010) Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond) 2005:34

    Google Scholar 

  • Broussard JL, Van Cauter E (2016) Disturbances of sleep and circadian rhythms: novel risk factors for obesity. Curr Opin Endocrinol Diabetes Obes 23:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA (2012) Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho F, Cilio M, Guo Y, Virshup D, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Keesler G (2001) Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 489

    Google Scholar 

  • Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan N, Michalik L, Delaunay F, Wahli W, Laudet V (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol Baltim Md 20

    Google Scholar 

  • Caratti G, Iqbal M, Hunter L, Kim D, Wang P, Vonslow RM, Begley N, Tetley AJ, Woodburn JL, Pariollaud M et al (2018) REVERBa couples the circadian clock to hepatic glucocorticoid action. J Clin Invest 128:4454–4471

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo J, Sassone-Corsi P (2005) Circadian clock control by SUMOylation of BMAL1. Science 309

    Google Scholar 

  • Carlson O, Martin B, Stote K, Golden E, Maudsley S, Najjar S, Ferrucci L, Ingram D, Longo D, Rumpler W et al (2007) Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56

    Google Scholar 

  • Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20

    Google Scholar 

  • Chaix A, Lin T, Le H, Chang M, Panda S (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29

    Google Scholar 

  • Challet E (2019) The circadian regulation of food intake. Nat Rev Endocrinol 15

    Google Scholar 

  • Chen P, Han Z, Yang P, Zhu L, Hua Z, Zhang J (2010) Loss of clock gene mPer2 promotes liver fibrosis induced by carbon tetrachloride. Hepatol Res Off J Jpn Soc Hepatol 40:1117–1127

    Article  CAS  Google Scholar 

  • Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong L-W, DiTacchio L, Atkins AR, Glass CK et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chooi Y, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92

    Google Scholar 

  • Crosby P, Hamnett R, Putker M, Hoyle N, Reed M, Karam C, Maywood E, Stangherlin A, Chesham J, Hayter E et al (2019) Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell:177

    Google Scholar 

  • Crowther M, Ferguson S, Vincent G, Reynolds A (2021) Non-pharmacological interventions to improve chronic disease risk factors and sleep in shift workers: a systematic review and meta-analysis. Clocks Sleep 3

    Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14

    Google Scholar 

  • Dang F, Sun X, Ma X, Wu R, Zhang D, Chen Y, Xu Q, Wu Y, Liu Y (2016) Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat Commun 7:12696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delezie J, Dumont S, Dardente H, Oudart H, GrÕchez-Cassiau A, Klosen P, Teboul M, Delaunay F, PÕvet P, and Challet E. (2012). The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J: 26, 3321–3335

    Google Scholar 

  • de Mello A, Costa A, Engel J, Rezin G (2018) Mitochondrial dysfunction in obesity

    Google Scholar 

  • Depner C, Melanson E, McHill A, Wright K (2018) Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. Proc Natl Acad Sci U S A 115

    Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125

    Google Scholar 

  • Drake C, Roehrs T, Richardson G, Walsh J, Roth T (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27

    Google Scholar 

  • Duffy J, Cain S, Chang A, Phillips A, Münch M, Gronfier C, Wyatt J, Dijk D, Wright K, Czeisler C (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A 108(Suppl 3)

    Google Scholar 

  • Dyar KA, Ciciliot S, Wright LE, Biensø RS, Tagliazucchi GM, Patel VR, Forcato M, Paz MIP, Gudiksen A, Solagna F et al (2014) Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 3:29–41

    Article  CAS  PubMed  Google Scholar 

  • Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D, Jastroch M, Schneider S, de Mateo S, Cervantes M et al (2018a) Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174:1571–1585.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, Quagliarini F, Kleinert M, Fischer K, Eichmann TO et al (2018b) Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol 16:e2005886

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155:1464–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eide E, Kang H, Crapo S, Gallego M, Virshup D (2005) Casein kinase I in the mammalian circadian clock. Methods Enzymol 393

    Google Scholar 

  • Emilia I, Farrell GC, Graham R, Pauline H, Richard K, Isabelle L (2003) Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatol Baltim Md 38:123–132

    Article  Google Scholar 

  • Espitia-Bautista E, Velasco-Ramos M, Osnaya-Ramírez I, Ángeles-Castellanos M, Buijs R, Escobar C (2017) Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism 72

    Google Scholar 

  • Ferraz-Bannitz R, Beraldo R, Coelho P, Moreira A, Castro M, Foss-Freitas M (2021) Circadian misalignment induced by chronic night shift work promotes endoplasmic reticulum stress activation impacting directly on human metabolism. Biology 10

    Google Scholar 

  • Fustin J-M, Doi M, Yamada H, Komatsu R, Shimba S, Okamura H (2012) Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 1:341–349

    Article  CAS  PubMed  Google Scholar 

  • Gabel K, Hoddy K, Haggerty N, Song J, Kroeger C, Trepanowski J, Panda S, Varady K (2018) Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging 4

    Google Scholar 

  • Gallego M, Kang H, Virshup D (2006) Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J 399

    Google Scholar 

  • Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, Li L, Cao S, Dong X, Gong Y et al (2015) Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med 72:72–78

    Article  PubMed  Google Scholar 

  • Gao Y, Gan T, Jiang L, Yu L, Tang D, Wang Y, Li X, Ding G (2020) Association between shift work and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of observational studies. Chronobiol Int 37:29–46

    Article  PubMed  Google Scholar 

  • Garaulet M, Ordovás J, Madrid J (2010) The chronobiology, etiology and pathophysiology of obesity. Int J Obes (Lond) 2005:34

    Google Scholar 

  • Garaulet M, Gómez-Abellán P, Alburquerque-Béjar J, Lee Y, Ordovás J, Scheer F (2013) Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond) 2005:37

    Google Scholar 

  • Gavrila A, Peng C-K, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS (2003) Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 88:2838–2843

    Article  CAS  PubMed  Google Scholar 

  • Gekakis N, Staknis D, Nguyen H, Davis F, Wilsbacher L, King D, Takahashi J, Weitz C (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280

    Google Scholar 

  • Gill S, Panda S (2015) A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab 22

    Google Scholar 

  • Gómez-Abellán P, Gómez-Santos C, Madrid JA, Milagro FI, Campion J, Martínez JA, Ordovás JM, Garaulet M (2010) Circadian expression of adiponectin and its receptors in human adipose tissue. Endocrinology 151:115–122

    Article  PubMed  Google Scholar 

  • Greenwell B, Trott A, Beytebiere J, Pao S, Bosley A, Beach E, Finegan P, Hernandez C, Menet J (2019) Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep 27

    Google Scholar 

  • Grimaldi B, Bellet M, Katada S, Astarita G, Hirayama J, Amin R, Granneman J, Piomelli D, Leff T, Sassone-Corsi P (2010) PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab 12

    Google Scholar 

  • Guan D, Xiong Y, Trinh TM, Xiao Y, Hu W, Jiang C, Dierickx P, Jang C, Rabinowitz JD, Lazar MA (2020) The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 369:1388–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillaumond F, Dardente H, Giguère V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20

    Google Scholar 

  • Harfmann B, Schroder E, Kachman M, Hodge B, Zhang X, Esser K (2016) Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong E, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick J et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15

    Google Scholar 

  • Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, Marks F, Sliney D, Hunt CE, Hirota T et al (2017) Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  • He B, Nohara K, Park N, Park Y, Guillory B, Zhao Z, Garcia J, Koike N, Lee C, Takahashi J et al (2016) The small molecule Nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 23(4):610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama K, Fukada Y (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152

    Google Scholar 

  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450

    Google Scholar 

  • Hodge B, Wen Y, Riley L, Zhang X, England J, Harfmann B, Schroder E, Esser K (2015) The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter AL, Pelekanou CE, Adamson A, Downton P, Barron NJ, Cornfield T, Poolman TM, Humphreys N, Cunningham PS, Hodson L et al (2020) Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proc Natl Acad Sci U S A 117:25869–25879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter AL, Pelekanou CE, Barron NJ, Northeast RC, Grudzien M, Adamson AD, Downton P, Cornfield T, Cunningham PS, Billaud J-N et al (2021) Adipocyte NR1D1 dictates adipose tissue expansion during obesity. Elife 10:e63324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison A, Regmi P, Manoogian E, Fleischer J, Wittert G, Panda S, Lk H (2019) Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obes Silver Spring Md 27

    Google Scholar 

  • Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL et al (2015) Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22:709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowicz D, Barnea M, Wainstein J, Froy O (2013) High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obes Silver Spring Md 21

    Google Scholar 

  • Jakubowicz D, Wainstein J, Ahren B, Landau Z, Bar-Dayan Y, Froy O (2015) Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care 38

    Google Scholar 

  • Kaasik K, Kivimäe S, Allen J, Chalkley R, Huang Y, Baer K, Kissel H, Burlingame A, Shokat K, Ptáček L et al (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17

    Google Scholar 

  • Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58

    Google Scholar 

  • Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L (2015) Circadian dysfunction induces leptin resistance in mice. Cell Metab 22:448–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, Katchy CA, Lee C, Moore DD, Fu L (2016) Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30:909–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivimäki M, Batty G, Hublin C (2011) Shift work as a risk factor for future type 2 diabetes: evidence, mechanisms, implications, and future research directions. PLoS Med 8

    Google Scholar 

  • Kohsaka A, Laposky A, Ramsey K, Estrada C, Joshu C, Kobayashi Y, Turek F, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6

    Google Scholar 

  • Koronowski KB, Kinouchi K, Welz P-S, Smith JG, Zinna VM, Shi J, Samad M, Chen S, Magnan CN, Kinchen JM et al (2019) Defining the Independence of the liver circadian clock. Cell 177:1448–1462.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamia KA, Storch K-F, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172–15177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamia K, Sachdeva U, DiTacchio L, Williams E, Alvarez J, Egan D, Vasquez D, Juguilon H, Panda S, Shaw R et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326

    Google Scholar 

  • Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20

    Google Scholar 

  • Lee H, Chen R, Kim H, Etchegaray J-P, Weaver DR, Lee C (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci U S A 108:16451–16456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemberger T, Saladin R, Vázquez M, Assimacopoulos F, Staels B, Desvergne B, Wahli W, Auwerx J (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271:1764–1769

    Article  CAS  PubMed  Google Scholar 

  • Li M-D, Ruan H-B, Hughes ME, Lee J-S, Singh JP, Jones SP, Nitabach MN, Yang X (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licinio J, Mantzoros C, Negrão AB, Cizza G, Wong ML, Bongiorno PB, Chrousos GP, Karp B, Allen C, Flier JS et al (1997) Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 3:575–579

    Article  CAS  PubMed  Google Scholar 

  • Lim YC, Hoe VCW, Darus A, Bhoo-Pathy N (2018) Association between night-shift work, sleep quality and metabolic syndrome. Occup Environ Med 75:716–723

    Article  PubMed  Google Scholar 

  • Manella G, Sabath E, Aviram R, Dandavate V, Ezagouri S, Golik M, Adamovich Y, Asher G (2021) The liver-clock coordinates rhythmicity of peripheral tissues in response to feeding. Nat Metab 3:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcheva B, Perelis M, Weidemann BJ, Taguchi A, Lin H, Omura C, Kobayashi Y, Newman MV, Wyatt EJ, McNally EM et al (2020) A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes Dev 34:1089–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T (2014) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16

    Google Scholar 

  • Masri S, Sassone-Corsi P (2018) The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 24

    Google Scholar 

  • Maury E, Navez B, Brichard SM (2021) Circadian clock dysfunction in human omental fat links obesity to metabolic inflammation. Nat Commun 12:2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F, Waridel P, Quadroni M, Gachon F, Naef F (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 111

    Google Scholar 

  • Mayeuf-Louchart A, Thorel Q, Delhaye S, Beauchamp J, Duhem C, Danckaert A, Lancel S, Pourcet B, Woldt E, Boulinguiez A et al (2017) Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass. Sci Rep 7:14383

    Article  PubMed  PubMed Central  Google Scholar 

  • Milić S, Lulić D, Štimac D (2014) Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 20:9330–9337

    PubMed  PubMed Central  Google Scholar 

  • Minokoshi Y, Kim Y-B, Peroni OD, Fryer LGD, Müller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  CAS  PubMed  Google Scholar 

  • Mohawk J, Green C, Takahashi J (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35

    Google Scholar 

  • Moore R, Eichler V (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206

    Article  CAS  PubMed  Google Scholar 

  • Mukherji A, Kobiita A, Chambon P (2015a) Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci U S A 112

    Google Scholar 

  • Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy M, Chambon P (2015b) Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A 112

    Google Scholar 

  • Mukherji A, Bailey SM, Staels B, Baumert TF (2019) The circadian clock and liver function in health and disease. J Hepatol 71:200–211

    Article  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neufeld-Cohen A, Robles M, Aviram R, Manella G, Adamovich Y, Ladeuix B, Nir D, Rousso-Noori L, Kuperman Y, Golik M et al (2016) Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A 113(12):E1673–E1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe T, Chavan R, Fonseca Costa SS, Brenna A, Ripperger JA, Albrecht U (2016) REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor. J Cell Sci 129:4143–4154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osaki Y, Kuwahara K, Hu H, Nakagawa T, Yamamoto S, Honda T, Mizoue T, Japan Epidemiology Collaboration on Occupational Health Study Group (2021) Shift work and the onset of type 2 diabetes: results from a large-scale cohort among Japanese workers. Acta Diabetol 58:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Antoch M, Miller B, Su A, Schook A, Straume M, Schultz P, Kay S, Takahashi J, Hogenesch J (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109

    Google Scholar 

  • Paschos GK, Ibrahim S, Song W-L, Kunieda T, Grant G, Reyes TM, Bradfield CA, Vaughan CH, Eiden M, Masoodi M et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18:1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peek C, Affinati A, Ramsey K, Kuo H, Yu W, Sena L, Ilkayeva O, Marcheva B, Kobayashi Y, Omura C et al (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342(6158):1243417

    Article  PubMed  PubMed Central  Google Scholar 

  • Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C et al (2015) Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350:aac4250

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrenko V, Gandasi NR, Sage D, Tengholm A, Barg S, Dibner C (2020) In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis. Proc Natl Acad Sci U S A 117:2484–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietroiusti A, Neri A, Somma G, Coppeta L, Iavicoli I, Bergamaschi A, Magrini A (2010) Incidence of metabolic syndrome among night-shift healthcare workers. Occup Environ Med 67:54–57

    Article  CAS  PubMed  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  • Rakshit K, Matveyenko A (2021) Induction of core circadian clock transcription factor Bmal1 enhances β-cell function and protects against obesity-induced glucose intolerance. Diabetes 70(1):143–154

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC (2018) mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 14:e1007369

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Plascencia O, Saderi N, Escobar C, Salgado-Delgado R (2017) Feeding during the rest phase promotes circadian conflict in nuclei that control energy homeostasis and sleep-wake cycle in rats. Eur J Neurosci 45

    Google Scholar 

  • Raspé E, Duez H, Mansén A, Fontaine C, Fiévet C, Fruchart J-C, Vennström B, Staels B (2002) Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription. J Lipid Res 43:2172–2179

    Article  PubMed  Google Scholar 

  • Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, Lilley KS, Kyriacou CP, Hastings MH (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatol Baltim Md 45:1478–1488

    Article  CAS  Google Scholar 

  • Reischl S, Kramer A (2011) Kinases and phosphatases in the mammalian circadian clock. FEBS Lett 585:1393–1399

    Article  CAS  PubMed  Google Scholar 

  • Reppert S, Weaver D (2002) Coordination of circadian timing in mammals. Nature 418

    Google Scholar 

  • Rizza S, Luzi A, Mavilio M, Ballanti M, Massimi A, Porzio O, Magrini A, Hannemann J, Menghini R, Lehrke M et al (2021) Alterations in Rev-ERBα/BMAL1 ratio and glycated hemoglobin in rotating shift workers: the EuRhythDia study. Acta Diabetol 58:1111–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22:939–943

    Article  CAS  PubMed  Google Scholar 

  • Rudic RD, McNamara P, Curtis A-M, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiter M, La Fleur SE, van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM (2003) The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52:1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B, Auwerx J (1995) Transient increase in obese gene expression after food intake or insulin administration. Nature 377:527–529

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs R, Escobar C (2010) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151

    Google Scholar 

  • Sardon Puig L, Pillon NJ, Näslund E, Krook A, Zierath JR (2020) Influence of obesity, weight loss, and free fatty acids on skeletal muscle clock gene expression. Am J Physiol Endocrinol Metab 318:E1–E10

    Article  PubMed  Google Scholar 

  • Scheer F, Hilton M, Mantzoros C, Shea S (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106

    Google Scholar 

  • Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli L, Witzig M, Ishihara N, Mihara K, Ripperger J, Albrecht U et al (2018) Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab 27(3):657–666.e5

    Article  CAS  PubMed  Google Scholar 

  • Schmutz I, Ripperger J, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24

    Google Scholar 

  • Schmutz I, Wendt S, Schnell A, Kramer A, Mansuy I, Albrecht U (2011) Protein phosphatase 1 (PP1) is a post-translational regulator of the mammalian circadian clock. PLoS One 6

    Google Scholar 

  • Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O (2012) Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J Off Publ Fed Am Soc Exp Biol 26

    Google Scholar 

  • Shostak A, Meyer-Kovac J, Oster H (2013) Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 62:2195–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  • Stote K, Baer D, Spears K, Paul D, Harris G, Rumpler W, Strycula P, Najjar S, Ferrucci L, Ingram D et al (2007) A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr 85

    Google Scholar 

  • Sundaram S, Yan L (2016) Time-restricted feeding reduces adiposity in mice fed a high-fat diet. Nutr Res 36

    Google Scholar 

  • Sutton E, Beyl R, Early K, Cefalu W, Ravussin E, Peterson C (2018) Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 27

    Google Scholar 

  • Takano A, Isojima Y, Nagai K (2004) Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Chem 279

    Google Scholar 

  • Tasaka Y, Inoue S, Maruno K, Hirata Y (1980) Twenty-four-hour variations of plasma pancreatic polypeptide, insulin and glucagon in normal human subjects. Endocrinol Jpn 27:495–498

    Article  CAS  PubMed  Google Scholar 

  • Torra IP, Tsibulsky V, Delaunay F, Saladin R, Laudet V, Fruchart JC, Kosykh V, Staels B (2000) Circadian and glucocorticoid regulation of Rev-erbalpha expression in liver. Endocrinology 141:3799–3806

    Article  CAS  PubMed  Google Scholar 

  • Tsang AH, Koch CE, Kiehn J-T, Schmidt CX, Oster H (2020) An adipokine feedback regulating diurnal food intake rhythms in mice. Elife 9

    Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Um J, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung J (2007) Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem 282

    Google Scholar 

  • Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS (1991) Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 88:934–942

    Article  PubMed  PubMed Central  Google Scholar 

  • van Moorsel D, Hansen J, Havekes B, Scheer F, Jörgensen J, Hoeks J, Schrauwen-Hinderling V, Duez H, Lefebvre P, Schaper N et al (2016) Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab 5(8):635–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S (2021) Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. Sci Adv 7

    Google Scholar 

  • Villanueva J, Livelo C, Trujillo A, Chandran S, Woodworth B, Andrade L, Le H, Manor U, Panda S, Melkani G (2019) Time-restricted feeding restores muscle function in drosophila models of obesity and circadian-rhythm disruption. Nat Commun 10

    Google Scholar 

  • Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A 106

    Google Scholar 

  • Wang H, van Spyk E, Liu Q, Geyfman M, Salmans M, Kumar V, Ihler A, Li N, Takahashi J, Andersen B (2017) Time-restricted feeding shifts the skin circadian clock and alters UVB-induced DNA damage. Cell Rep 20

    Google Scholar 

  • Weber F, Hung H, Maurer C, Kay S (2006) Second messenger and Ras/MAPK signalling pathways regulate CLOCK/CYCLE-dependent transcription. J Neurochem 98

    Google Scholar 

  • Wefers J, van Moorsel D, Hansen J, Connell N, Havekes B, Hoeks J, van Marken Lichtenbelt W, Duez H, Phielix E, Kalsbeek A et al (2018) Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc Natl Acad Sci U S A 115

    Google Scholar 

  • Wefers J, Connell NJ, Fealy CE, Andriessen C, de Wit V, van Moorsel D, Moonen-Kornips E, Jörgensen JA, Hesselink MKC, Havekes B et al (2020) Day-night rhythm of skeletal muscle metabolism is disturbed in older, metabolically compromised individuals. Mol Metab 41:101050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehrens S, Christou S, Isherwood C, Middleton B, Gibbs M, Archer S, Skene D, Johnston J (2017) Meal timing regulates the human circadian system. Curr Biol 27

    Google Scholar 

  • Wilkinson M, Zadourian A, Lo H, Fakhouri S, Shoghi A, Wang X, Fleischer JG, Navlakha S, Panda S, Taub PR (2020) Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 31

    Google Scholar 

  • Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MKC, Paquet C, Delhaye S, Shin Y et al (2013) Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 19:1039–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff G, Esser K (2012) Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc 44(9):1663–1670

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamanaka Y, Honma S, Honma K (2008) Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles. Genes Cells 13(5):497–507

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Downes M, Yu R, Bookout A, He W, Straume M, Mangelsdorf D, Evans R (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126

    Google Scholar 

  • Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, Yamamoto S, Sakurai M, Oike H, Wada N et al (2016) Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism 65

    Google Scholar 

  • Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatol Baltim Md 64:73–84

    Article  Google Scholar 

  • Zarrinpar A, Chaix A, Yooseph S, Panda S (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20

    Google Scholar 

  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Lahens N, Ballance H, Hughes M, Hogenesch J (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111

    Google Scholar 

  • Zhang Y, Fang B, Emmett M, Damle M, Sun Z, Feng D, Armour S, Remsberg J, Jager J, Soccio R et al (2015) GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348

    Google Scholar 

  • Zhang Y, Fang B, Damle M, Guan D, Li Z, Kim YH, Gannon M, Lazar MA (2016) HNF6 and Rev-erbα integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms. Genes Dev 30:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Some of our work included in this review manuscript was supported by the Fondation pour la Recherche Médicale (FRM, EQU202003010310), INSERM, the Région Hauts-de-France/FEDER (Chronoregeneration), Association Francaise contre les Myopathies (AFM), Fondation de France and the Société Francophone du Diabète (SFD)-ABBOTT DIABETES CARE and SFD-SERVIER. This project is cofounded by the European Union under the European Region Development Fund (ERDF) and by the Hauts de France Region Council (contract_20000007), the MEL (contract-2020-ESR-02) and the French State (contract n°2019-R3-CTRL_IPL_Phase3). This project is cofounded by ERDF and by the Hauts de France Region Council (contract_20002842), the MEL (contract-2020-ESR-06) and the French State (contract n°2020-R3-CTRL_IPL_Phase4). This project is co-funded by the Agence Nationale pour la Recherche (ANR) (ANR-19-CE15-0033-01, ANR-20-CE14-0035). This work was supported by the Agence Nationale de la Recherche (ANR) grants « European Genomic Institute for Diabetes » E.G.I.D, ANR-10-LABX-0046, a French State fund managed by ANR under the frame program Investissements d’Avenir I-SITE ULNE/ANR-16-IDEX-0004 ULNE. BS is a recipient of an Advance ERC Grant (694717). The funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Staels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sebti, Y., Hebras, A., Pourcet, B., Staels, B., Duez, H. (2022). The Circadian Clock and Obesity. In: Eckel, J., Clément, K. (eds) From Obesity to Diabetes. Handbook of Experimental Pharmacology, vol 274. Springer, Cham. https://doi.org/10.1007/164_2021_579

Download citation

Publish with us

Policies and ethics