Skip to main content

Hydrogenosomes and Symbiosis

  • Chapter
Molecular Basis of Symbiosis

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 41))

  • 1369 Accesses

6 Conclusions

Hydrogenosomes are not the same. They evolved several times — independently — from mitochondria or the common ancestor of hydrogenosomes and mitochondria. This process, in general, involved the loss of the organellar genome together with the mitochondrial electron transport chain, and metabolic adaptations to anoxic environments such as the use of protons as terminal electron acceptors. Substantial differences in the physiological capacities of the various hydrogenosomes reflect their independent evolution through evolutionary tinkering. Notably, even the common denominator of these organelles, i.e., the production of hydrogen, can become marginal in certain hydrogenosomes.

The hydrogenosomal metabolism is crucial for the establishment of symbiotic associations, and sometimes differences in the host’s metabolism seem to be able to provide the clues for an understanding of the presence or absence of pears to be insufficient to explain the observations. Obviously, intrinsic properties of the various hosts and their symbionts play an important role, which are, at the moment, clearly not even beyond the level of a preliminary phenomenological description. Intensive efforts are required to analyse the elusive molecular basis of symbiotic associations. Many fascinating insights into the secrets of symbiotic associations await their discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the Apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  • Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Voncken FG, van Alen A, van Hoek A, Boxma B, Vogels GD, Veenhuis M, Hackstein JHP (1998a) A hydrogenosome with a genome. Nature 396:527–528

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Voncken FGJ, Harhangi H, Hosea KM, Vogels GD, Hackstein JHP (1998b) Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp E2. Mol Microbiol 30:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Voncken FGJ, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD, Hackstein JHP (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32(5):1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Andersson SGE, Kurland CG (1999) Origin of mitochondria and hydrogenosomes. Curr Opin Microbiol 2:535–541

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Lill R (2004) The cell’s cookbook for iron-sulfur clusters: recipes for fool’s gold? Chem Biochem 5:1044–1049

    CAS  Google Scholar 

  • Balk J, Pierik AJ, Netz DJA, Muhlenhoff U, Lill R (2004) The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J 23(10):2105–2115

    Article  PubMed  CAS  Google Scholar 

  • Bakatselou C, Beste D, Kadri AO, Somanath S, Clark CG (2003) Analysis of genes of mitochondrial origin in the genus Entamoeba. J Eukaryot Microbiol 50(3):210–214

    Article  PubMed  CAS  Google Scholar 

  • Benchimol M, Engelke F (2003) Hydrogenosome behavior during the cell cycle in Tritrichomonas foetus. Biol Cell 95(5):283–293

    Article  PubMed  CAS  Google Scholar 

  • Benchimol M, Johnson PJ, de Souza W (1996) Morphogenesis of the hydrogenosome: an ultrastructural study. Biol Cell 87:197–205

    Article  PubMed  CAS  Google Scholar 

  • Biagini GA, Finlay BJ, Lloyd D (1997) Evolution of the hydrogenosome. FEMS Microbiol Lett 155(2):133–140

    Article  PubMed  CAS  Google Scholar 

  • Bowman BH, Taylor JW, Brownlee AG, Lee J, Lu SD, White TJ (1992) Molecular evolution of the fungi: relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol Biol Evol 9:285–296

    PubMed  CAS  Google Scholar 

  • Boxma B (2004) The origin of hydrogenosomes. Thesis Nijmegen. ISBN90-9018595-x, PPI (Print Partners Ipskamp), Enschede, The Netherlands

    Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldón T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434, 74–79

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Broers CAM, Stumm CK, Vogels GD, Brugerolle G (1990) Psalteriomonas lanterna gen. nov., sp. nov. a free-living amoeboflagellate isolated from fresh-water anaerobic sediments. Eur J Protistol 25:69–380

    Google Scholar 

  • Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for the mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994

    PubMed  CAS  Google Scholar 

  • Chagan I, Tokura M, Jouany JP, Ushida K (1999) Detection of methanogenic archaea associated with rumen ciliate protozoa. J Gen Appl Microbiol 45(6):305–308

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL, Johnson PJ (2000) Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol 106:307–313

    Article  PubMed  CAS  Google Scholar 

  • Coombs GH, Hackstein JHP (1995) Anaerobic protists and anaerobic ecosystems. In: Brugerolle G, Mignot J-P (eds) Protistological actualities. Proceedings of the 2nd European Congress of Protistology, Clermont-Ferrand, France. Universite Blaise Pascal, Clermont-Ferrand, pp 90–101

    Google Scholar 

  • Corliss JO (1979) The ciliated protozoa. Pergamon Press, Oxford

    Google Scholar 

  • Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ (2002) An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 296(1–2):45–52

    Article  PubMed  CAS  Google Scholar 

  • De Bary A (1879) Die Erscheinung der Symbiose. Trubner, Strassburg

    Google Scholar 

  • Dyall SD, Johnson PJ (2000) Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. Curr Opin Microbiol 3:404–411

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuenberger D, Turck CW, Johnson PJ (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A, Koehler CM, Johnson PJ (2003) Trichomonas vaginalis HMP35, a putative poreforming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278:30548–30561

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Brown, MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ (1994) The use of small-subunit ribosomal-RNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology UK 140:225–235

    Article  CAS  Google Scholar 

  • Embley TM, Martin W (1998) A hydrogen-producing mitochondrion. Nature 396:517–519

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M, Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R Soc Lond B 262:87–93

    Article  CAS  Google Scholar 

  • Embley TM, Horner DA, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 12:437–441

    Article  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1989) Kentrophoros-a mouthless ciliate with a symbiotic kitchen garden. Ophelia 30:75–93

    Google Scholar 

  • Fenchel T, Finlay BJ (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480

    CAS  Google Scholar 

  • Fenchel T, Bernard C (1993a) A purple protist. Nature 362:300

    Article  Google Scholar 

  • Fenchel T, Bernard C (1993b) Endosymbiotic purple non-sulfur bacteria in an anaerobic ciliated protozoan. FEMS Microbiol Lett 110(1):21–25

    Article  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford Univ Press, Oxford

    Google Scholar 

  • Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314

    Article  CAS  Google Scholar 

  • Finlay BJ, Maberly SC, Esteban GF (1996) Spectacular abundance of ciliates in anoxic pond water: contribution of symbiont photosynthesis to host respiratory oxygen requirements. FEMS Microbiol Ecol 20:229–235

    Article  CAS  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276(9):6125–6132

    Article  PubMed  CAS  Google Scholar 

  • Germot A, Philippe H, LeGuyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci USA 93:14614–1467

    Article  PubMed  CAS  Google Scholar 

  • Gijzen HJ, Broers CAM, Barughare M, Stumm CK (1991) Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 57:1630–1634

    PubMed  CAS  Google Scholar 

  • Goosen NK, Horemans AMC, Hillebrand SJW, Stumm CK, Vogels GD (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Arch Microbiol 150:165–170

    Article  Google Scholar 

  • Goosen NK, van der Drift C, Stumm CK, Vogels GD (1990a) End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiol Lett 69:171–175

    Article  CAS  Google Scholar 

  • Goosen NK, Wagener S, Stumm CK (1990b) A comparison of 2 strains of the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:187–192

    Article  Google Scholar 

  • Gustafson DE, Stoecker DK, Johnson MD, van Heukelem WF, Sneider K (2000) Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405:1049–1052

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FG (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7:441–447

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology 104:290–302

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, van Hoek AHAM, Leunissen JAM, Huynen M (2002) Anaerobic ciliates and their methanogenic endosymbionts. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publ, Dordrecht, pp 451–464

    Google Scholar 

  • Haferkamp I, Hackstein JHP, Voncken FGJ, Schmit G, Tjaden J (2002) Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. Eur J Biochem 269(13):3172–3181

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Cepicka I, Flegr J, Tachezy J, Kulda J (2004) Critical analysis of the topology and rooting of the parabasalian 16S rRNA tree. Mol Phylogenet Evol 32(3):711–723

    Article  PubMed  CAS  Google Scholar 

  • Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426:127–128

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1705

    CAS  PubMed  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases — ancient enzymes in modern eukaryotes. Trends Biochem Sci 27(3):148–153

    Article  PubMed  CAS  Google Scholar 

  • Humphreys M, Ralphs J, Durrant L, Lloyd D (1998) Confocal laser scanning microscopy of trichomonads: Hydrogenosomes store calcium and show a membrane potential. Eur J Protistol 34(4):356–362

    Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  • Kisidayova S, Varadyova Z, Zelenak I, Siroka P (2000) Methanogenesis in rumen ciliate cultures of Entodinium caudatum and Epidinium ecaudatum after long-term cultivation in a chemically defined medium. Folia Microbiologica 45(3):269–274

    Article  PubMed  CAS  Google Scholar 

  • Kleina P, Bettim-Bandinelli J, Bonatto SL, Benchimol M, Bogo MR (2004) Molecular phylogeny of Trichomonadidae family inferred from ITS-1, 5.8S rRNA and ITS-2 sequences. Int J Parasitol 34(8):963–970

    Article  PubMed  CAS  Google Scholar 

  • Kusch J, Stremmel M, Breiner HW, Adams V, Schweikert M, Schmidt HJ (2000) The toxic symbiont Caedibacter caryophila in the cytoplasm of Paramecium novaurelia. Microb Ecol 40:330–335

    PubMed  CAS  Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    PubMed  CAS  Google Scholar 

  • Lloyd D, Hillman K, Yarlett N, Williams AG (1989) Hydrogen-production by rumen holotrich protozoa — effects of oxygen and implications for metabolic control by in situ conditions. J Protozool 36:205–213

    PubMed  CAS  Google Scholar 

  • Lloyd D, Williams AG, Amann R, Hayes AJ, Durrant L, Ralphs JR (1996) Intracellular prokaryotes in rumen ciliate protozoa: detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. Eur J Protistol 32(4):523–531

    Google Scholar 

  • Lloyd D, Ralphs JR, Harris JC (2002) Hydrogen production in Giardia intestinalis, a eukaryote with no hydrogenosomes. Trends Parasitol 18(4):155–156

    Article  PubMed  CAS  Google Scholar 

  • Mai ZM, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19(3):2198–2205

    PubMed  CAS  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  PubMed  CAS  Google Scholar 

  • Marvin-Sikkema FD, Lahpor GA, Kraak MN, Gottschal JC, Prins RA (1992) Characterization of an anaerobic fungus from llama faeces. J Gen Microbiol 138:2235–2241

    PubMed  CAS  Google Scholar 

  • Marvin-Sikkema FD, Kraak MN, Veenhuis M, Gottschal JC, Prins RA (1993) The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp. L2 is recognized by antibodies directed against the C-terminal microbody targeting signal SKL. Eur J Cell Biol 61:86–91

    PubMed  CAS  Google Scholar 

  • Marvin-Sikkema FD, Driessen AJM, Gottschal JC, Prins RA (1994) Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix: evidence for a functional relationship with mitochondria. Mycol Res 98:205–212

    Article  CAS  Google Scholar 

  • Moon-van der Staay SY, van der Staay GWM, Javorsky P, Jouany J-P, Michalowski T, Nsabimana E, Macheboeuf D, Kisidayová S, Varadyova Z, McEwan NR, Newbold CJ, Hackstein JHP (2002) Diversity of rumen ciliates revealed by 18S ribosomal DNA analysis. Reprod Nutr Dev 42[Suppl 1]:S76

    Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    PubMed  Google Scholar 

  • Müller M (1998) Enzymes and compartmentalization of core energy metabolism of anaerobic protists — a special case in eukaryotic evolution? In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. The Systematics Association, special volume series 56. Kluwer Academic Publ, Dordrecht, pp 109–132

    Google Scholar 

  • Nasirudeen AMA, Tan KSW (2004) Isolation and characterization of the mitochondrion-like organelle from Blastocystis hominis. J Microbiol Methods 58(1):101–109

    Article  PubMed  CAS  Google Scholar 

  • Nishihara N, Horiike S, Takahashi T, Kosaka T, Shigenaka Y, Hosoya H (1998) Cloning and characterization of endosymbiotic algae isolated from Paramecium bursaria. Protoplasma 203:91–99

    Article  Google Scholar 

  • Nixon JE, Field J, McArthur AG, Sogin ML, Yarlett N, Loftus BJ, Samuelson J (2003) Iron-dependent hydrogenases of Entamoeba histolytica and Giardia lambia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol Bull 204:1–9

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Ohkuma M, Yamada A, Hongoh Y, Kudo T (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69(1):625–633

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171(2):147–153

    Article  PubMed  CAS  Google Scholar 

  • Orpin CG (1994) Anaerobic fungi: taxonomy, biology and distribution in nature. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi. Dekker, New York, pp 1–45

    Google Scholar 

  • Paquin B, Lang BF (1996) The mitochondrial DNA of Allomyces macrogynus: the complete genomic sequence from an ancestral fungus. J Mol Biol 255:688–701

    Article  PubMed  CAS  Google Scholar 

  • Paquin B, Forget L, Roewer I, Lang BF (1995) Molecular phylogeny of Allomyces macrogynus: congruency between nuclear ribosomal RNA-and mitochondrial protein-based trees. J Mol Evol 41:657–665

    Article  PubMed  CAS  Google Scholar 

  • Radek R (1997) Spirotrichonympha minor n. sp., a new hypermastigote termite flagellate. Eur J Protistol 33(4):360–374

    Google Scholar 

  • Radek R, Hausmann K (1994) Placojoenia sinaica n g, n sp, a symbiotic flagellate from the termite Kalotermes sinaicus. Eur J Protistol 30(1):25–37

    Google Scholar 

  • Ragan MA, Chapman DJ (1978) A biochemical phylogeny of the protists. Academic Press, New York

    Google Scholar 

  • Regensbogenova M, McEwan N, Javorsky P, Kisidayova S, Michalowski T, Newbold CJ, Hackstein JHP, Pristas P (2004b) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol Lett 238:307–313

    Article  PubMed  CAS  Google Scholar 

  • Riordan CE, Ault JG, Langreth SG, Keithley JG (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147

    Article  PubMed  CAS  Google Scholar 

  • Rivière L, van Weelden SWH, Glass P, Vegh P, Coustou V, Biran M, van Hellemond JJ, Bringaud F, Tielens AGM, Boshart M (2004) Acetate: succinate CoA-transferase in procyclic Trypanosoma brucei: gene identification and role in carbohydrate metabolism. J Biol Chem 279(44):45337–45346

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ (1999) Reconstructing early events in eukaryotic evolution. Am Nat 154:S146–S163

    Article  PubMed  Google Scholar 

  • Rotte C, Henze K, Müller M, Martin W (2000) Origins of hydrogenosomes and mitochondria — commentary. Curr Opin Microbiol 3:481–486

    Article  PubMed  CAS  Google Scholar 

  • Schüssler A, Schnepf E (1992) Photosynthesis dependent acidification of perialgal vacuoles in the Paramecium bursaria-Chlorella symbiosis — visualization by monensin. Protoplasma 166(3–4):218–222

    Article  Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463

    Article  PubMed  CAS  Google Scholar 

  • Springer N, Amann R, Ludwig W, Schleifer KH, Schmidt H (1996) Polynucleobacter necessarius, an obligate bacterial endosymbiont of the hypotrichous ciliate Euplotes aediculatus, is a member of the beta-subclass of Proteobacteria. FEMS Microbiol Lett 135:333–336

    PubMed  CAS  Google Scholar 

  • Stejskal F, Slapeta J, Ctrnacta V, Keithly JS (2003) A Narf-like gene from Cryptosporidium parvum resembles homologues observed in aerobic protists and higher eukaryotes. FEMS Microbiol Lett 229(1):91–96

    Article  PubMed  CAS  Google Scholar 

  • Stingl U, Maass A, Radek R, Brune A (2004) Symbionts of the gut flagellate Stauroojoenina sp from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’. Microbiology SGM 150:2229–2235

    Article  CAS  Google Scholar 

  • Stoecker DK, Michaels AE, Davis LH (1987) Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326:790–792

    Article  Google Scholar 

  • Teunissen MJ, Smits AA, Op den Camp HJ, Huis in—t Veld JH, Vogels GD (1991) Fermentation of cellulose and production of cellulolytic and xylanolytic enzymes by anaerobic fungi from ruminant and non-ruminant herbivores. Arch Microbiol 156:290–296

    Article  PubMed  CAS  Google Scholar 

  • Tielens AG, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572

    Article  PubMed  CAS  Google Scholar 

  • Tjaden J, Haferkamp I, Boxma B, Tielens AGM, Huynen M, Hackstein JHP (2004) A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 51:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Tokura M, Chagan I, Ushida K, Kojima Y (1999) Phylogenetic study of methanogens associated with rumen ciliates. Curr Microbiol 39(3):123–128

    Article  PubMed  CAS  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33(3):233–240

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron sulfur protein maturation. Nature 426:172–176

    Article  PubMed  CAS  Google Scholar 

  • Turner AC, Lushbaugh WB (1991) Three aspecific ATPases in Trichomonas vaginalis. Comp Biochem Physiol B 100:691–696

    Article  PubMed  CAS  Google Scholar 

  • Vanacova S, Liston DR, Tachezy J, Johnson PJ (2003) Molecular biology of the amitochondriate parasites, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. Int J Parasitol 33:235–255

    Article  PubMed  CAS  Google Scholar 

  • Van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Article  Google Scholar 

  • Van Bruggen JJA, Zwart KB, van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7

    Article  Google Scholar 

  • Van Bruggen JJA, Zwart KB, Herman JGF, van Hove EM, Assema RM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp.nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Article  Google Scholar 

  • Van der Giezen M, Sjollema KA, Artz RRE, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408(2):147–150

    Article  PubMed  Google Scholar 

  • Van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ERS (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J 21(4):572–579

    Article  PubMed  Google Scholar 

  • Van der Giezen M, Birdsey GM, Horner DS, Lucocq J, Dyal PL, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20(7):1051–1061

    Article  PubMed  Google Scholar 

  • Van Hellemond JJ, Opperdoes FR, Tielens AGM (1998) Trypanosomatidae produce acetate via a mitochondrial acetate: succinate CoA transferase. Proc Natl Acad Sci USA 95(6):3036–3041

    Article  PubMed  Google Scholar 

  • Van Hoek AHAM, van Alen TA, Sprakel VSI, Hackstein JHP, Vogels GD (1998) Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Mol Biol Evol 15:1195–1206

    PubMed  Google Scholar 

  • Van Hoek AHAM, Sprakel VSI, van Alen TA, Theuvenet APR, Vogels GD, Hackstein JHP (1999) Voltage dependent reversal of anodic galvanotaxis in Nyctotherus ovalis. J Euk Microbiol 46:427–433

    Article  PubMed  Google Scholar 

  • Van Hoek AHAM, Akhmanova AS, Huynen M, Hackstein JHP (2000a) A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. Mol Biol Evol 17:202–206

    PubMed  Google Scholar 

  • Van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000b) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501

    PubMed  CAS  Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    PubMed  CAS  Google Scholar 

  • Voncken FGJ (2001) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Thesis Nijmegen. Ponsen and Looien BV, Wageningen, The Netherlands

    Google Scholar 

  • Voncken FGJ, Boxma B, Tjaden J, Akhmanova AS, Huynen M, Verbeek F, Tielens AGM, Haferkamp I, Neuhaus HE, Vogels G, Veenhuis M, Hackstein JHP (2002a) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44:1441–1454

    Article  PubMed  CAS  Google Scholar 

  • Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP (2002b) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp L2. Gene 284(1–2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Wier AM, Dolan MF, Margulis L (2004) Cortical symbionts and hydrogenosomes of the amitochondriate protist Staurojoenina assimilis. Symbiosis 36(2):153–168

    Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Kamagata Y, Nakamura K (1997) The effect of endosymbiotic methanogens on the growth and metabolic profile of the anaerobic free-living ciliate Trimyema compressum. FEMS Microbiol Lett 149(1):129–132

    Article  CAS  Google Scholar 

  • Yarlett N (1994) Fermentation product generation in rumen chytridiomycetes. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi. Dekker, New York, pp 129–146

    Google Scholar 

  • Yarlett N (2004) Anaerobic protists and hidden mitochondria. Microbiology SGM 150:1127–1129

    Article  CAS  Google Scholar 

  • Yarlett N, Lloyd D, Williams AG (1985) Butyrate formation from glucose by the rumen protozoan Dasytricha ruminantium. Biochem J 228(1):187–192

    PubMed  CAS  Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739

    PubMed  CAS  Google Scholar 

  • Zwart KB, Goosen NK, van Schijndel MW, Broers CAM, Stumm CK, Vogels GD (1988) Cytochemical-localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta and Trimyema compressum. J Gen Microbiol 134:2165–2170

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hackstein, J.H.P., Yarlett, N. (2005). Hydrogenosomes and Symbiosis. In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_7

Download citation

Publish with us

Policies and ethics