Abstract
In this paper we present a prefixed analytic tableau calculus for a class of normal multimodal logics and we present some results about decidability and undecidability of this class. The class is characterized by axioms of the form [t 1] ... [t n]ϕ ⊃ [s 1] ... [s m]ϕ, called inclusion axioms, where the t i’s and s j’s are constants. This class of logics, called grammar logics, was introduced for the first time by Fariñas del Cerro and Penttonen to simulate the behaviour of grammars in modal logics, and includes some well-known modal systems. The prefixed tableau method is used to prove the undecidability of modal systems based on unrestricted, context sensitive, and context free grammars. Moreover, we show that the class of modal logics, based on right-regular grammars, are decidable by means of the filtration methods, by defining an extension of the Fischer-Ladner closure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. Auffray and P. Enjalbert. Modal Theorem Proving: An equational viewpoint. Journal of Logic and Computation, 2(3):247–297, 1992.
M. Baldoni. Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. PhD thesis, Dipartimento di Informatica, Università degli Studi di Torino, 1998.
M. Baldoni, L. Giordano, and A. Martelli. A Multimodal Logic to define Modules in Logic Programming. In Proc. of ILPS’93, pages 473–487. The MIT Press, 1993.
M. Baldoni, L. Giordano, and A. Martelli. A Framework for Modal Logic Programming. In Proc. of the JICSLP’96, pages 52–66. The MIT Press, 1996.
B. Beckert and R. Goré. Free Variable Tableaux for Propositional Modal Logics. In Proc. of TABLEAUX’97, volume 1227 of LNAI, pages 91–106. Springer-Verlag, 1997.
R. V. Book. Thue Systems as Rewriting Systems. Journal of Symbolic Computation, 3(1–2):39–68, 1987.
L. Catach. Normal Multimodal Logics. In Proc. of the AAAI’ 88, pages 491–495. Morgan Kaufmann, 1988.
L. Catach. TABLEAUX: A General Theorem Prover for Modal Logics. Journal of Automated Reasoning, 7(4):489–510, 1991.
G. De Giacomo and F. Massacci. Tableaux and Algorithms for Propositional Dynamic Logic with Converse. In Proc. of CADE-15, volume 1249 of LNAI, pages 613–627. Springer, 1996.
P. Enjalbert and L. Fariñas del Cerro. Modal Resolution in Clausal Form. Theoretical Computer Science, 65(1):1–33, 1989
L. Fariñas del Cerro and M. Penttonen. Grammar Logics. Logique et Analyse, 121–122:123–134, 1988.
M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs. Journal of Computer and System Sciences, 18(2):194–211, 1979.
M. Fisher and R. Owens. An Introduction to Executable Modal and Temporal Logics. In Proc. of the IJCAI’93 Workshop on Executable Modal and Temporal Logics, volume 897 of LNAI, pages 1–20. Springer-Verlag, 1993.
M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese library. D. Reidel, Dordrecht, Holland, 1983.
O. Gasquet. Optimization of deduction for multi-modal logics. In Applied Logic: How, What and Why? Kluwer Academic Publishers, 1993.
M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987.
R. A. Goré. Tableaux Methods for Modal and Temporal Logics. Technical Report TR-ARP-16-95, Automated Reasoning Project, Australian Nat. Univ., 1995.
G. Governatori. Labelled Tableaux for Multi-Modal Logics. In Proc. of TABLEAUX’ 95, volume 918 of LNAI, pages 79–94. Springer-Verlag, 1995.
J. Y. Halpern and Y. Moses. A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief. Artificial Intelligence, 54:319–379, 1992.
D. Harel, A. Pnueli, and J. Stavi. Propositional Dynamic Logic of Nonregular Programs. Journal of Computer and System Sciences, 26:222–243, 1983.
J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and computation. Addison-Wesley Publishing Company, 1979.
G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Meuthuen, 1984.
G. E. Hughes and M. J. Cresswell. A New Introduciton to Modal Logic. Routledge, 1996.
M. Kracth. Highway to the Danger Zone. Journal of Logic and Computation, 5(1):93–109, 1995.
F. Massacci. Strongly Analytic Tableaux for Normal Modal Logics. In Proc. of the CADE’94, volume 814 of LNAI, pages 723–737. Springer-Verlag, 1994.
A. Nerode. Some Lectures on Modal Logic. In F. L. Bauer, editor, Logic, Algebra, and Computation, volume 79 of NATO ASI Series. Springer-Verlag, 1989.
A. Nonnengart. First-Order Modal Logic Theorem Proving and Functional Simulation. In Proc. of IJCAI’93, pages 80–85, 1993.
H. J. Ohlbach. Optimized Translation of Multi Modal Logic into Predicate Logic. In Proc. of the Logic Programming and Automated Reasoning, volume 822 of LNAI, pages 253–264. Springer-Verlag, 1993.
H. J. Ohlbach. Translation methods for non-classical logics: An overview. Bull. of the IGPL, 1(1):69–89, 1993.
H.J. Ohlbach. Semantics-Based Translation Methods for Modal Logics. Journal of Logic and Computation, 1(5):691–746, 1991.
M.A. Orgun and W. Ma. An overview of temporal and modal logic programming. In Proc. of the First International Conference on Temporal Logic, volume 827 of LNAI, pages 445–479. Springer-Verlag, 1994.
J. Pitt and J. Cunningham. Distributed Modal Theorem Proving with KE. In Proc. of the TABLEAUX’96, volume 1071 of LNAI, pages 160–176. Springer-Verlag, 1996.
M. Wooldridge and N. R. Jennings. Agent Theories, Architectures, and Languages: A survey. In Proc. of the ECAI-94 Workshop on Agent Theories, volume 890 of LNAI, pages 1–39. Springer-Verlag, 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baldoni, M., Giordano, L., Martelli, A. (1998). A Tableau Calculus for Multimodal Logics and Some (Un)Decidability Results. In: de Swart, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1998. Lecture Notes in Computer Science(), vol 1397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69778-0_13
Download citation
DOI: https://doi.org/10.1007/3-540-69778-0_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64406-4
Online ISBN: 978-3-540-69778-7
eBook Packages: Springer Book Archive