Abstract
With the advent of television and radar during the Second World War, the behavior of wideband amplifiers in the time domain has become very important [Ref. 1.1]. In today’s digital world this is even more the case. It is a paradox that designers and troubleshooters of digital equipment still depend on oscilloscopes, which — at least in their fast and low level input part — consist of analog wideband amplifiers. So the calculation of the time domain response of wideband amplifiers has become even more important than the frequency, phase, and time delay response.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G.E. Valley& H. Wallman, Vacuum Tube Amplifiers, MIT Radiation Laboratory Series, Vol. 18, McGraw-Hill, New York, 1948.
R.B. Randall, Frequency Analysis, Brüel & Kjær, Nærum, 1987.
M.F. Gardner & J.L. Barnes, Transients in Linear Systems Studied by Laplace Transform, Twelfth Printing, John Wiley & Sons, New York, 1956.
O. Föllinger, Laplace und Fourier Transformation, AEG-Telefunken, Berlin, 1982.
G. Doetsch, Introduction to the Theory and Application of the Laplace Transform, Springer-Verlag, Berlin, 1970.
G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace Transformation und der Z—Transformation, R. Oldenburg Verlag, Munich-Vienna, 1985.
T.F. Bogart, Jr., Laplace Transforms and Control Systems, Theory for Technology, John Wiley & Sons, New York, 1982.
M. O’Flynn & E. Moriarthy, Linear Systems, Time Domain and Transform Analysis, John Wiley, New York, 1987.
G.A. Korn & T.M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, 1961.
M.R. Spiegel, Theory and Problems of Laplace Transforms, Schaum’s Outline Series, McGraw-Hill, New York, 1965.
J. Plemelj, Teorija analitičnih funkcij, Slovenska akademija znanosti in umetnosti, Ljubljana, 1953.
M.R. Spiegel, Theory and Problems of Complex Variable, SI (Metric) Edition, McGraw-Hill, New York, 1974.
I. Stewart & D. Tall, Complex Variables, Cambridge University Press, Cambridge, 1983.
R.W. Churchil & J.W. Brown, Complex Variables and Applications, Fourth Edition, International Student Edition, McGraw-Hill, Auckland, 1984.
W. Geliert, H. Küstner, M. Hellwich, & H. Kästner, The VNR Concise Encyclopedia of Mathematics, second edition, Van Nostrand Rheinhold, New York, 1992.
E. Van Valkenburg, Introduction to Modern Network Synthesis, John Wiley & Sons, New York, 1960.
P. Starič, Proof of the Inverse Laplace Transform for Positive Real Functions, Elektrotehniški vestnik, Ljubljana, 1991, pp. 23–27.
J.N. Little & C.B. Moler, MATLAB User’s Guide, The MathWorks, Inc., South Natick, USA, 1990.
G.E. Hostetter, Engineering Network Analysis, Harper & Row, Publishers, New York, 1984.
J. Bednařik & J. Daněk, Obrazové zesilovače pro televisi a měřicí techniku, Statní nakladatelstvi technické literatury, Prague, 1957.
V. Bubenik, Impulsová Technika, Statni nakladatelstvi technické literatury, Prague, 1958.
D.E. Scott, An Introduction to System Analysis, A System Approach, McGraw-Hill, New York, 1987.
P. Kraniauskas, Transforms in Signals and Systems, Addison-Wesley, Wokingham, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer
About this chapter
Cite this chapter
Starič, P., Margan, E. (2006). The Laplace Transform. In: Starič, P., Margan, E. (eds) Wideband Amplifiers. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28341-8_1
Download citation
DOI: https://doi.org/10.1007/978-0-387-28341-8_1
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-28340-1
Online ISBN: 978-0-387-28341-8
eBook Packages: EngineeringEngineering (R0)