Skip to main content

Reelin and Odontogenesis

  • Chapter
Reelin Glycoprotein

Human tooth is made of three different hard tissues: enamel—recovering the crown and corresponding to the most mineralized tissue found in the body; cementum— deposited on the root surface; and dentine—underlying the enamel and cementum and forming the bulk of the tooth. Dentine covers the pulp, which lies in the center of the tooth. Pulp, the vital mesenchymal tissue, contains: (1) a specialized layer of cells at its periphery (the odontoblast layer) that is responsible for the dentine matrix synthesis and (2) blood vessels and nerves. During development, tooth pulp acquires a profuse nociceptive and sympathetic innervation from the trigeminal ganglion (TG) and the superior cervical ganglion, respectively.

The purpose of this chapter is to briefly review the core components and signaling mechanism of the Reelin pathway, and then to present evidence on possible downstream components. Issues related to the first two questions, the timing and site of Reelin action and the possible changes in cell biology, are left for other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allard, B., Couble, M. L., Magloire, H., and Bleicher, F. (2000). Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J. Biol. Chem. 275:25556-25561.

    Article  PubMed  Google Scholar 

  • Allard, B., Magloire, H., Couble, M. L., Maurin, J. C., and Bleicher, F. (2006). Voltage-gated sodium channels confer excitability to human odontoblasts: possible role in tooth pain transmission. J. Biol. Chem. 281:29002-29010.

    Article  PubMed  Google Scholar 

  • Anderson, D. J., Matthews, B., and Shelton, L. E. (1967). Variations in the sensitivity of osmotic stimulation of human dentin. Arch. Oral Biol. 12:43-47.

    Article  PubMed  Google Scholar 

  • Borrell, V., Del Rio, J. A., Alcantara, S., Derer, M., Martinez, A., D’Arcangelo, G., Nakajima, K., Mikoshiba, K., Derer, P., Curran, T., and Soriano, E. (1999). Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19:1345-1358.

    PubMed  Google Scholar 

  • Brannstrom, M. (1962). A hydrodynamic mechanism in the transmission of pain producing stimuli through the dentine. In: Anderson, D. J. (ed.), Sensory Mechanisms in Dentine. Pergamon Press, Oxford, pp. 73-79.

    Google Scholar 

  • Buchaille, R., Couble, M. L., Magloire, H., and Bleicher, F. (2000). A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol. 19: 421-430.

    Article  PubMed  Google Scholar 

  • Byers, M. R., and Närhi, M. V. O. (1999). Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit. Rev. Oral Biol. Med. 10:4-39.

    Article  PubMed  Google Scholar 

  • Byers, M. R., Kvinnsland, I., and Bothwell, M. (1992). Analysis of low affinity nerve growth factor receptor during pulpal healing and regeneration of myelinated and unmyelinated axons in replanted teeth. J. Comp. Neurol. 326:470-484.

    Article  PubMed  Google Scholar 

  • Byers, M. R., Suzuki, H., and Maeda, T. (2003). Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration. Microsc. Res. Tech. 60:503-515.

    Article  PubMed  Google Scholar 

  • Couble, M. L., Farges, J. C., Bleicher, F., Perrat-Mabillon, B., Boudeulle, M., and Magloire, H. (2000). Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif. Tissue Int. 66:129-138.

    Article  PubMed  Google Scholar 

  • Dowell, P., and Addy, M. (1983). Dentine hypersensitivity: a review: Aetiology, symptoms and theories of pain production. J. Clin. Periodontol. 10:341-350.

    Article  PubMed  Google Scholar 

  • Fried, K., Risling, M., Edwall, L., and Olgart, L. (1992). Immunoelectron microscopic localization of laminin and collagen type IV in normal and denervated tooth pulp of the cat. Cell Tissue Res. 270:157-164.

    Article  PubMed  Google Scholar 

  • Fried, K., Sime, W., Lillesaar, C., Virtanen, I., Tryggvasson, K., and Patarroyo, M. (2005). Laminins 2 (alpha2beta1gamma1, Lm-211) and 8 (alpha4beta1gamma1, Lm-411) are synthesized and secreted by tooth pulp fibroblasts and differentially promote neurite outgrowth from trigeminal ganglion sensory neurons. Exp. Cell Res. 307:329-341.

    Article  PubMed  Google Scholar 

  • Fristad, I., Heyeraas, K. J., and Kvinnsland, I. (1994). Nerve fibres and cells immunoreactive to neurochemical markers in developing rat molars and supporting tissues. Arch. Oral Biol. 39:633-646.

    Article  PubMed  Google Scholar 

  • Heymann, R., Kallenbach, S., Alonso, S., Carroll, P., and Mitsiadis, T. A. (2001). Dynamic expression patterns of the new protocadherin families CNRs and PCDH-gamma during mouse odontogenesis: comparison with reelin expression. Mech. Dev. 106: 181-184.

    Article  PubMed  Google Scholar 

  • Hildebrand, C., Fried, K., Tuisku, F., and Johansson, C. S. (1995). Teeth and tooth nerves. Prog. Neurobiol. 45:165-222.

    Article  PubMed  Google Scholar 

  • Ibuki, T., Kido, M. A., Kiyoshima, T., Terada, Y., and Tanaka, T. (1996). An ultrastructural study of the relationship between sensory trigeminal nerves and odontoblasts in rat dentin/pulp as demonstrated by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP). J. Dent. Res. 75:1963-1970.

    Article  PubMed  Google Scholar 

  • Ikeda, Y., and Terashima, T. (1997). Expression of reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev. Dyn. 210:157-172.

    Article  PubMed  Google Scholar 

  • Kettunen, P., Loes, S., Furmanek, T., Fjeld, K., Kvinnsland, I. H., Behar, O., Yagi, T., Fujisawa, H., Vainio, S., Taniguchi, M., and Luukko, K. (2005). Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development 132:323-334.

    Article  PubMed  Google Scholar 

  • Lillesaar, C., and Fried, K. (2004). Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Neuroscience 125:149-161.

    Article  PubMed  Google Scholar 

  • Loes, S., Luukko, K., Kvinnsland, I.H., Salminen, M., and Kettunen, P. (2003). Developmentally regulated expression of Netrin-1 and -3 in the embryonic mouse molar tooth germ. Dev. Dyn. 227:573-577.

    Article  PubMed  Google Scholar 

  • Luukko, K. (1997). Immunohistochemical localization of nerve fibres during development of embryonic rat molar using peripherin and protein gene product 9.5 antibodies. Arch. Oral Biol. 42:189-195.

    Article  PubMed  Google Scholar 

  • Luukko, K., Arumae, U., Karavanov, A., Moshnyakov, M., Sainio, K., Sariola, M., Saarma, M., and Thesleff, I. (1997). Neurotrophin mRNA expression in the developing tooth suggests multiple roles in innervation and organogenesis. Dev. Dyn. 210:117-129.

    Article  PubMed  Google Scholar 

  • Luukko, K., Kvinnsland, I. H., and Kettunen, P. (2005). Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev. Dyn. 234:482-488.

    Article  PubMed  Google Scholar 

  • Magloire, H., Lesage, F., Couble, M. L., Lazdunski, M., and Bleicher, F. (2003). Expression and localization of TREK-1 K+ channels in human odontoblasts. J. Dent. Res. 82:542-545.

    Article  PubMed  Google Scholar 

  • Maurin, J. C., Couble, M. L., Didier-Bazes, M., Brisson, C., Magloire, H., and Bleicher, F. (2004). Expression and localization of reelin in human odontoblasts. Matrix Biol. 23:277-285.

    Article  PubMed  Google Scholar 

  • Maurin, J. C., Delorme, G., Machuca-Gayet, I., Couble, M. L., Magloire, H., Jurdic, P., and Bleicher, F. (2005). Odontoblast expression of semaphorin 7A during innervation of human dentin. Matrix Biol. 24:232-238.

    Article  PubMed  Google Scholar 

  • Mitsiadis, T. A., Couble, P., Dicou, E., Rudkin, B. B., and Magloire, H. (2003). Patterns of nerve growth factor (NGF), proNGF, and p75 NGF receptor expression in the rat incisor: compari-son with expression in the molar. Differentiation 54:161-175.

    Article  Google Scholar 

  • Mohamed, S. S., and Atkinson, M. E. (1983). A histological study of the innervation of develop-ing mouse teeth. J. Anat. 136:735-749.

    PubMed  Google Scholar 

  • Nosrat, C. A., Fried, K., Lindskog, S., and Olson, L. (1997). Cellular expression of neurotrophin mRNAs during tooth development. Cell Tissue Res. 290:569-580.

    Article  PubMed  Google Scholar 

  • Nosrat, C. A., Fried, K., Ebendal, T., and Olson, L. (1998). NGF, BDNF, NT3, NT4 and GDNF in tooth development. Eur. J. Oral Sci. 106(Suppl. 1):94-99.

    PubMed  Google Scholar 

  • Pearson, A. A. (1977). The early innervation of the developing deciduous teeth. J. Anat. 123: 563-577.

    PubMed  Google Scholar 

  • Qian, X. B., and Naftel, J. P. (1996). Effects of neonatal exposure to anti-nerve growth factor on the number and size distribution of trigeminal neurones projecting to the molar dental pulp in rats. Arch. Oral Biol. 41:359-367.

    Article  PubMed  Google Scholar 

  • Rice, D. S., and Curran, T. (2000). Disabled-1 is expressed in type AII amacrine cells in the mouse retina. J. Comp. Neurol. 424:327-338.

    Article  PubMed  Google Scholar 

  • Sahlberg, C., Aukhil, I., and Thesleff, I. (2001). Tenascin-C in developing mouse teeth: expres-sion of splice variants and stimulation by TGFbeta and FGF. Eur. J. Oral Sci. 109:114-124.

    Article  PubMed  Google Scholar 

  • Salmivirta, K., Sorokin, L. M., and Ekblom, P. (1997). Differential expression of laminin alpha chains during murine tooth development. Dev. Dyn. 210:206-215.

    Article  PubMed  Google Scholar 

  • Shimizu, A., Nakakura-Ohshima, K., Noda, T., Maeda, T., and Ohshima, H. (2000). Responses of immunocompetent cells in the dental pulp to replantation during the regeneration process in rat molars. Cell Tissue Res. 302:221-233.

    Article  PubMed  Google Scholar 

  • Teillon, S. M., Yiu, G., and Walsh, C. A. (2003). Reelin is expressed in the accessory olfactory system, but is not a guidance cue for vomeronasal axons. Brain Res. Dev. Brain Res. 140:303-307.

    Article  PubMed  Google Scholar 

  • Tsuzuki, H., and Kitamura, H. (1991). Immunohistochemical analysis of pulpal innervation in developing rat molars. Arch. Oral Biol. 36:139-146.

    Article  PubMed  Google Scholar 

  • Villeda, S. A., Akopians, A. L., Babayan, A. H., Basbaum, A. I., and Phelps, P. E. (2006). Absence of reelin results in altered nociception and aberrant neuronal positioning in the dorsal spinal cord. Neuroscience 139:1385-1396.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Bleicher, F., Magloire, H., Couble, ML., Maurin, JC. (2008). Reelin and Odontogenesis. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_19

Download citation

Publish with us

Policies and ethics