Abstract
Neurons need to communicate over long distances. This is accomplished by electrical signals, or action potentials, that propagate along the axon. We have seen that linear cables cannot transmit information very far; neural signals are able to reach long distances because there exist voltage-gated channels in the cell membrane. The combination of ions diffusing along the axon together with the nonlinear flow of ions across the membrane allows for the existence of an action potential that propagates along the axon with a constant shape and velocity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In J. Goldstein, editor, Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, pages 5–49. Springer, New York, 1975.
G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equat., 23:335–367, 1977.
A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod. Wave solutions for a discrete reaction-diffusion equation. Eur. J. Appl. Math., 11(4):399–412, 2000.
C. Conley. Isolated invariant Sets and the Morse Index. CBMS Lecture Notes in Math, volume 38. AMS Press, Providence, RI, 1978.
S. Coombes and M. R. Owen. Evans functions for integral neural field equations with heaviside firing rate function. SIAM J. Appl. Dyn. Syst., 3:574–600, 2004.
P. Dayan and L. F. Abbott. Theoretical Neuroscience. MIT, Cambridge, MA; London, England, 2001.
G. B. Ermentrout and J. Rinzel. Waves in a simple, excitable or oscillatory, reaction-diffusion model. J. Math. Biol., 11(3):269–294, 1981.
G. B. Ermentrout, R. F. Galán, and N. N. Urban. Reliability, synchrony and noise. Trends Neurosci., 31:428–434, 2008.
J. W. Evans. Nerve axon equations. iv. Indiana Univ. Math. J., 24:1169–1190, 1975.
O. Feinerman, M. Segal, and E. Moses. Signal propagation along unidimensional neuronal networks. J. Neurophysiol., 94:3406–3416, 2005.
N. Fenichel. Geometric singular perturbation theory. J. Diff. Equat., 31:53–91, 1979.
J. A. Feroe. Existence and stability of multiple impulse solutions of a nerve axon equation. SIAM J. Appl. Math., 42:235–246, 1982.
B. J. Hall and K. R. Delaney. Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb. J. Physiol. (Lond.), 543:819–834, 2002.
F. Han, N. Caporale, and Y. Dan. Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60:321–327, 2008.
D. Johnston and S. M. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1995.
D. Johnston and S. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1999.
D. Johnston, J. C. Magee, C. M. Colbert, and B. R. Cristie. Active properties of neuronal dendrites. Annu. Rev. Neurosci., 19:165–186, 1996.
E. Kandel, J. Schwartz, and T. Jessell. Principles of Neural Science. Appleton & Lange, Norwalk, CT, 1991.
J. P. Keener. Proagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.
Y. Loewenstein and H. Sompolinsky. Temporal integration by calcium dynamics in a model neuron. Nat. Neurosci., 6:961–967, 2003.
M. London and M. Hausser. Dendritic computation. Annu. Rev. Neurosci., 28:503–532, 2005.
G. Maccaferri and C. J. McBain. The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J. Physiol. (Lond.), 497( Pt 1):119–130, 1996.
W. S. McCulloch and W. Pitts. The statistical organization of nervous activity. Biometrics, 4:91–99, 1948.
G. Medvedev. Reduction of a model of an excitable cell to a one-dimensional map. Phys. D, 202:37–59, 2005.
J. Rinzel. On repetitive activity in nerve. Fed. Proc., 37:2793–2802, 1978.
H. R. Wilson and J. D. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13:55–80, 1973.
H. R. Wilson, R. Blake, and S. H. Lee. Dynamics of travelling waves in visual perception. Nature, 412:907–910, 2001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Ermentrout, G.B., Terman, D.H. (2010). Propagating Action Potentials. In: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87708-2_6
Download citation
DOI: https://doi.org/10.1007/978-0-387-87708-2_6
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-87707-5
Online ISBN: 978-0-387-87708-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)