Skip to main content

Propagating Action Potentials

  • Chapter
  • First Online:
Mathematical Foundations of Neuroscience

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 35))

  • 8234 Accesses

Abstract

Neurons need to communicate over long distances. This is accomplished by electrical signals, or action potentials, that propagate along the axon. We have seen that linear cables cannot transmit information very far; neural signals are able to reach long distances because there exist voltage-gated channels in the cell membrane. The combination of ions diffusing along the axon together with the nonlinear flow of ions across the membrane allows for the existence of an action potential that propagates along the axon with a constant shape and velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In J. Goldstein, editor, Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, pages 5–49. Springer, New York, 1975.

    Chapter  Google Scholar 

  2. G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equat., 23:335–367, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod. Wave solutions for a discrete reaction-diffusion equation. Eur. J. Appl. Math., 11(4):399–412, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Conley. Isolated invariant Sets and the Morse Index. CBMS Lecture Notes in Math, volume 38. AMS Press, Providence, RI, 1978.

    Google Scholar 

  5. S. Coombes and M. R. Owen. Evans functions for integral neural field equations with heaviside firing rate function. SIAM J. Appl. Dyn. Syst., 3:574–600, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Dayan and L. F. Abbott. Theoretical Neuroscience. MIT, Cambridge, MA; London, England, 2001.

    MATH  Google Scholar 

  7. G. B. Ermentrout and J. Rinzel. Waves in a simple, excitable or oscillatory, reaction-diffusion model. J. Math. Biol., 11(3):269–294, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. B. Ermentrout, R. F. Galán, and N. N. Urban. Reliability, synchrony and noise. Trends Neurosci., 31:428–434, 2008.

    Article  Google Scholar 

  9. J. W. Evans. Nerve axon equations. iv. Indiana Univ. Math. J., 24:1169–1190, 1975.

    Article  MATH  Google Scholar 

  10. O. Feinerman, M. Segal, and E. Moses. Signal propagation along unidimensional neuronal networks. J. Neurophysiol., 94:3406–3416, 2005.

    Article  Google Scholar 

  11. N. Fenichel. Geometric singular perturbation theory. J. Diff. Equat., 31:53–91, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. A. Feroe. Existence and stability of multiple impulse solutions of a nerve axon equation. SIAM J. Appl. Math., 42:235–246, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. J. Hall and K. R. Delaney. Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb. J. Physiol. (Lond.), 543:819–834, 2002.

    Article  Google Scholar 

  14. F. Han, N. Caporale, and Y. Dan. Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60:321–327, 2008.

    Article  Google Scholar 

  15. D. Johnston and S. M. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1995.

    Google Scholar 

  16. D. Johnston and S. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1999.

    Google Scholar 

  17. D. Johnston, J. C. Magee, C. M. Colbert, and B. R. Cristie. Active properties of neuronal dendrites. Annu. Rev. Neurosci., 19:165–186, 1996.

    Article  Google Scholar 

  18. E. Kandel, J. Schwartz, and T. Jessell. Principles of Neural Science. Appleton & Lange, Norwalk, CT, 1991.

    Google Scholar 

  19. J. P. Keener. Proagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Loewenstein and H. Sompolinsky. Temporal integration by calcium dynamics in a model neuron. Nat. Neurosci., 6:961–967, 2003.

    Article  Google Scholar 

  21. M. London and M. Hausser. Dendritic computation. Annu. Rev. Neurosci., 28:503–532, 2005.

    Article  Google Scholar 

  22. G. Maccaferri and C. J. McBain. The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J. Physiol. (Lond.), 497( Pt 1):119–130, 1996.

    Google Scholar 

  23. W. S. McCulloch and W. Pitts. The statistical organization of nervous activity. Biometrics, 4:91–99, 1948.

    Article  Google Scholar 

  24. G. Medvedev. Reduction of a model of an excitable cell to a one-dimensional map. Phys. D, 202:37–59, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Rinzel. On repetitive activity in nerve. Fed. Proc., 37:2793–2802, 1978.

    Google Scholar 

  26. H. R. Wilson and J. D. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13:55–80, 1973.

    Article  MATH  Google Scholar 

  27. H. R. Wilson, R. Blake, and S. H. Lee. Dynamics of travelling waves in visual perception. Nature, 412:907–910, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ermentrout, G.B., Terman, D.H. (2010). Propagating Action Potentials. In: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87708-2_6

Download citation

Publish with us

Policies and ethics