Skip to main content

Applications to Partial Differential Equations

  • Chapter
Generalized Functions
  • 1192 Accesses

Abstract

Recall from Chapter 2 that the differential operator L of order p in n independent variables x 1,x 2, …,x n ,is

$$ Lu = \sum\limits_{\left| k \right| \leqslant p} {a_k (x)D^k u,} $$
(1)

where the coefficients a k have partial derivatives of all orders. Its formal adjoint L* is defined as

$$ L*v = \sum\limits_{\left| k \right| \leqslant p} {( - 1)^k D^k (a_k v).} $$
(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanwal, R.P. (2004). Applications to Partial Differential Equations. In: Generalized Functions. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8174-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8174-6_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-4343-0

  • Online ISBN: 978-0-8176-8174-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics