Skip to main content

Fault Tree Analysis

  • Chapter
  • First Online:
Assessment of Power System Reliability
  • 4067 Accesses

Abstract

The fault tree analysis is a standard method for improvement of reliability, which is applied in various sectors, such as nuclear industry, air and space industry, electrical industry, chemical industry, railway industry, transport, software reliability, and insurance. The fault tree analysis is described in a way of the procedure for application together with small practical examples. The development of the fault trees and their qualitative and quantitative evaluation is presented. The illustrative examples for the application of the importance measures, such as Fussel?Vesely importance, risk achievement worth, risk reduction worth, and Birnbaum importance, are given. The applications of the fault tree analysis are mentioned, and a comprehensive list of related references is given.

The first fault tree in the history was the one from which Eve took the forbidden apple in the Garden of Eden

Lee Remick

Probabilistic Safety Assessment conference, 1993

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASME RA-S-2002 (2002) Standard for probabilistic risk assessment for nuclear power plant applications, addendum (2005). ASME

    Google Scholar 

  2. RA-S-2008 (2008) Standard for level 1/large early release frequency probabilistic risk assessment for nuclear power plant applications. ASME

    Google Scholar 

  3. IEC 61025 (2006) Fault tree analysis (FTA). IEC

    Google Scholar 

  4. Roberts NH, Vesely WE, Haasl D, Goldberg FF (1981) Fault tree handbook, NUREG-0492. NRC, Washington

    Google Scholar 

  5. Vesely W, Dugan J, Fragola J et al (2002) Fault tree handbook with aerospace applications. National Aeronautics and Space Administration

    Google Scholar 

  6. Kumamoto H, Henley EJ (1996) Probabilistic risk assessment and management for engineers and scientists. IEEE, New York

    Google Scholar 

  7. Villemeur A (1992) Reliability, availability, maintainability and safety assessment: methods and techniques. Wiley, New York

    Google Scholar 

  8. No 50-P-8 (1995) Procedures for conduction probabilistic safety assessments of nuclear power plants (level 2), Safety Series. IAEA

    Google Scholar 

  9. No 50-P-12 (1996) Procedures for conduction probabilistic safety assessments of nuclear power plants (level 3), Safety Series. IAEA

    Google Scholar 

  10. No 50-P-12 (1996) Procedures for conduction probabilistic safety assessments of nuclear power plants (level 3), Safety Series. IAEA

    Google Scholar 

  11. Probabilistic risk assessment procedures guide (1982) NUREG/CR-2300, NRC

    Google Scholar 

  12. Probabilistic safety analysis procedures guide (1985) NUREG/CR-2815, NRC

    Google Scholar 

  13. PRA NASA Guide (2002) Probabilistic risk assessment procedures guide for NASA managers and practitioners. NASA

    Google Scholar 

  14. Čepin M (2005) Analysis of truncation limit in probabilistic safety assessment. Rel Eng Syst Saf 87(3):395?403

    Article  Google Scholar 

  15. Interim reliability evaluation program procedures guide (1983) NUREG/CR-2728, NRC

    Google Scholar 

  16. Analysis of core damage frequency (1990) NUREG/CR-4550, NRC

    Google Scholar 

  17. WASH-1400 (1975) Reactor safety study: an assessment of accident risks in US commercial nuclear power plants, NRC

    Google Scholar 

  18. WASH-740 (1957) Theoretical possibilities and consequences of major accidents in large nuclear power plants (The Brookhaven Report), AEC

    Google Scholar 

  19. German Risk Study (1979) Deutsche Risikostudie Kernkraftwerke, GRS, FRG

    Google Scholar 

  20. Brisbois J, Lanore JM, Villemeur A et al (1990) Les etudes probabilistes de surete des centrales nucleaires francaises de 900 et 1300 MWe

    Google Scholar 

  21. Severe accident risks: an assessment for five US nuclear power plants (1989) NUREG/CR-1150, NRC

    Google Scholar 

  22. Swaminathan S, Smidts C (1999) The mathematical formulation for the event sequence diagram framework. Rel Eng Syst Saf 65:103?118

    Article  Google Scholar 

  23. Papazoglou IA (1998) Mathematical foundations of event trees. Rel Eng Syst Saf 61:169?183

    Article  Google Scholar 

  24. Čepin M, Mavko B (2002) A dynamic fault tree. Rel Eng Syst Saf 75(1):83?91

    Article  Google Scholar 

  25. Vrbani? I, Kaštelan M (1997) Optimization of NPP Krško PSA model structure by the employment of house events. Nuclear Energy in Central Europe, Proceedings, pp 414?421

    Google Scholar 

  26. IEEE Standard 500 (1984) IEEE Guide to the collection and presentation of electrical, electronic, sensing component, and mechanical equipment reliability data for nuclear-power generating stations, appendix D. Reliability Data for Nuclear-Power Generating Stations, IEEE

    Google Scholar 

  27. T-book: reliability data of components in nordic nuclear power plants (2000) Villingby, Sweden TUD Office and P²n Consulting

    Google Scholar 

  28. T-Book (1992), ATV

    Google Scholar 

  29. IAEA-TECDOC-478 (1988) Component reliability data for use in probabilistic safety assessment. IAEA

    Google Scholar 

  30. Jordan Cizelj R, Mavko B, Kljenak I (2001) Component reliability assessment using quantitative and qualitative data. Rel Eng Syst Saf 71:81?95

    Article  Google Scholar 

  31. Atwood CL, La Chance JL, Martz HF et al (2003) Handbook of parameter estimation for probabilistic risk assessment (NUREG/CR-6823). NRC

    Google Scholar 

  32. Measures of risk importance and their applications (1983) NUREG/CR-3385, NRC

    Google Scholar 

  33. Borgonovo E, Apostolakis GE (2001) A new importance measure for risk-informed decision making. Rel Eng Syst Saf 72:193?212

    Article  Google Scholar 

  34. Čepin M (2010) Applications of the fault tree analysis for vulnerability studies (Chapter 8). In: Lesage A, Tondreau J (eds) Nuclear fuels: manufacturing processes, forms, and safety. Nova, New York

    Google Scholar 

  35. Čepin M, Cizelj L, Leskovar M, Mavko B (2006) Vulnerability analysis of a nuclear power plant considering detonations of explosive devices. J Nucl Sci Tech 43(10):1258?1269

    Article  Google Scholar 

  36. Muthukumar CT, Guarro SB, Apostolakis G (1994) Dependability of embedded software systems, reliability and safety assessment of dynamic process systems. In: Aldemir T, Siu NS, Mosleh A, Cacciabue PC, Goktepe BG (eds) NATO ASI series F. Springer Verlag, Heidelberg, pp 59?77

    Google Scholar 

  37. Čepin M, Mavko B (1999) Fault tree developed by an object-based method improves requirements specification for safety-related systems. Rel Eng Syst Saf 63:111?125

    Article  Google Scholar 

  38. Garrett J, Guarro SB, Apostolakis GE (1995) The dynamic flowgraph methodology for assessing the dependability of embedded software systems. IEEE Trans Syst Man Cybern 25(5):824?840

    Article  Google Scholar 

  39. Vaurio JK (1995) Optimization of test and maintenance intervals based on risk and cost. Rel Eng Syst Saf 49:23?36

    Article  Google Scholar 

  40. Čepin M, Mavko B (1997) Probabilistic safety assessment improves surveillance requirements in technical specifications. Rel Eng Syst Saf 56:69?77

    Article  Google Scholar 

  41. Martorell S, Carlos S, Sanchez A, Serradell V (2000) Constrained optimization of test intervals using a steady-state genetic algorithm. Rel Eng Syst Saf 67:215?232

    Article  Google Scholar 

  42. Čepin M (2002) Optimization of safety equipment outages improves safety. Rel Eng Syst Saf 77:71?80

    Article  Google Scholar 

  43. Yang JE, Sung TY, Yin Y (2000) Optimization of the surveillance test interval of the safety systems at the plant level. Nucl Tech 132:352?365

    Google Scholar 

  44. Harunuzzaman M, Aldemir T (1996) Optimization of standby safety system maintenance schedules in nuclear power plants. Nucl Tech 113:354?367

    Google Scholar 

  45. Čepin M, Gomez Cobo A, Martorell S et al (1999) Methods for testing and maintenance of safety related equipment: examples from an IAEA research project. In: Proceedings of ESREL99: safety and reliability, pp 247?251

    Google Scholar 

  46. IAEA-TECDOC-669 (1992) Case study on the use of PSA methods: assessment of technical specifications for the reactor protection system instrumentation. IAEA, Vienna

    Google Scholar 

  47. Čepin M, Martorell S (2002) Evaluation of allowed outage time considering a set of plant configurations. Rel Eng Syst Saf 78:259?266

    Article  Google Scholar 

  48. Siu N (1994) Risk assessment for dynamic systems: an overview. Rel Eng Syst Saf 43:43?73

    Article  Google Scholar 

  49. Ren Y, Dugan JB (1998) Optimal design of reliable systems using static and dynamic fault trees. IEEE Trans Rel 234?244

    Google Scholar 

  50. Dugan JB (1991) Automated analysis of phased-mission reliability. IEEE Trans Rel 40(1):45?52

    Article  MATH  Google Scholar 

  51. Dugan JB, Lyu MR (1994) System reliability analysis of an N-version programming application. IEEE Trans Rel 43(4):513?519

    Article  Google Scholar 

  52. Burdick GR, Fussel JB, Rasmuson DM, Wilson JR (1977) Phased mission analysis: a review of new developments and an application. IEEE Trans Rel R 26(1):43?49

    Article  Google Scholar 

  53. Modarres M, Cheon SW (1999) Function-centered modeling of engineering systems using the goal-success tree technique and functional primitives. Rel Eng Syst Saf 64:181?200

    Article  Google Scholar 

  54. Hu YS, Modarres M (1999) Evaluating system behavior through dynamic master logic diagram modeling. Rel Eng Syst Saf 64:241?269

    Article  Google Scholar 

  55. Matsuoka T, Kobayashi M (1988) GO-FLOW: a new reliability analysis methodology. Nucl Sci Eng 98:64?78

    Google Scholar 

  56. Farmer F (1967) Reactor safety and siting: a proposed risk criterion. Nucl Saf 8:539?548

    Google Scholar 

  57. Apostolakis GE (2004) How useful is quantitative risk assessment? Risk Anal 24:515?520

    Article  Google Scholar 

  58. Berg HP, Gortz R, Schimetschka E (2003) Quantitative probabilistic safety criteria for licensing and operation of nuclear plants. BFS-SK-03/03, BFS

    Google Scholar 

  59. Čepin M (2007) The risk criteria for assessment of temporary changes in a nuclear power plant. Risk Anal 27(4):991?998

    Article  Google Scholar 

  60. Caruso MA, Cheok MC, Cunningham MA et al (1999) An approach for using risk assessment in risk-informed decisions on plant-specific changes to the licensing basis. Rel Eng Syst Saf 63:231?242

    Article  Google Scholar 

  61. Use of probabilistic risk assessment methods in nuclear activities: final policy statement (1995) Federal Register, NRC

    Google Scholar 

  62. Individual plant examination for severe accident vulnerabilities-10CFR 50.54(f) (1988) Generic Letter, GL 88-20, NRC

    Google Scholar 

  63. Criteria for the performance of probabilistic safety assessment applications (2002) GS-1.14, CSN

    Google Scholar 

  64. Safety assessment principles for nuclear plants (1992) Health & Safety Executive, London

    Google Scholar 

  65. RG 1.174 (2002) An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis, NRC

    Google Scholar 

  66. RG 1.177 (1998) An approach for plant-specific, risk-informed decision making: technical specifications, NRC

    Google Scholar 

  67. RG 1.200 (2007) An approach for determining the technical adequacy of probabilistic risk assessment results for risk-informed activities, NRC

    Google Scholar 

  68. RG 1.201 (2006) Guidelines for categorizing structures, systems, and components in nuclear power plants according to their safety significance, NRC

    Google Scholar 

  69. Probabilistic safety assessment (PSA) for nuclear power plants, regulatory standard (2005) S-294, Canadian Nuclear Safety Commission

    Google Scholar 

  70. Probabilistic safety analysis in safety management of nuclear power plants (2003) YVL-2.8, STUK

    Google Scholar 

  71. Holmberg J, Puikkinen U, Rosquist T, Simola K (2001) Decision criteria in PSA applications. NKS-44

    Google Scholar 

  72. Samanta P, Kim IS, Mankamo T, Vesely WE (1995) Handbook of methods for risk-based analyses of technical specifications (NUREG/CR-6141). NRC

    Google Scholar 

  73. TR-105396 (1995) PSA applications guide. Electric Power Research Institute

    Google Scholar 

  74. Martorell S, Carlos S, Villanueva JF, Sánchez AI et al (2006) Use of multiple objective evolutionary algorithms in optimizing surveillance requirements. Rel Eng Syst Saf 91(9):1027?1038

    Article  Google Scholar 

  75. Keller W, Modarres M (2005) A Historical overview of probabilistic risk assessment development and its use in the nuclear power industry: a tribute to the late Professor Norman Carl Rasmussen. Rel Eng Syst Saf 89(3):271?285

    Article  Google Scholar 

  76. NUREG/CR-1278 (1983) Handbook for human reliability analysis with emphasis on nuclear power plants application. NRC

    Google Scholar 

  77. Čepin M (2008) DEPEND-HRA: a method for consideration of dependency in human reliability analysis. Rel Eng Syst Saf 93(10):1452?1460

    Article  Google Scholar 

  78. Čepin M (2007) Importance of human contribution within the human reliability analysis (IJS-HRA). J Loss Prev Proc Ind 21(3):268?276

    Google Scholar 

  79. Prošek A, Čepin M (2008) Success criteria time windows of operator actions using RELAP5/MOD33 within human reliability analysis. J Loss Prev Proc Ind 21(3):260?267

    Article  Google Scholar 

  80. Volkanovski A, Čepin M, Mavko B (2009) Application of the fault tree analysis for assessment of power system reliability. Rel Eng Syst Saf 94(6):1116?1127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Čepin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Čepin, M. (2011). Fault Tree Analysis. In: Assessment of Power System Reliability. Springer, London. https://doi.org/10.1007/978-0-85729-688-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-688-7_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-687-0

  • Online ISBN: 978-0-85729-688-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics