Abstract
6.1. Let F be a field. A map \(\,\nu : F\to {\bold{R}}\cup\{\infty\}\) is called an order function of F if it satisfies the following conditions:
-
(i)
\(\,\nu(x)=\infty\,\Longleftrightarrow\, x=0;\)
-
(ii)
\(\,\nu(xy)=\nu(x) +\nu(y);\)
-
(iii)
\(\,\nu(x+y)\ge\text{Min}\big\{\nu(x),\,\nu(y)\big\};\)
-
(iv)
There exists an element \(\,z\in F,\,\ne0,\,\) such that \(\,\nu(z)\ne 0.\)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2010 Springer New York
About this chapter
Cite this chapter
Shimura, G. (2010). Arithmetic in an Algebraic Number Field. In: Arithmetic of Quadratic Forms. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1732-4_2
Download citation
DOI: https://doi.org/10.1007/978-1-4419-1732-4_2
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-1731-7
Online ISBN: 978-1-4419-1732-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)