Skip to main content

Optical Stimulation of the Auditory Nerve

  • Chapter
  • First Online:
Auditory Prostheses

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 39))

  • 1693 Accesses

Abstract

Improvements in cochlear implant devices during the last decade have mainly been achieved through novel coding strategies rather than through improvement of the neural interface. The neural interface, however, is a bottleneck for transferring information from the cochlear implant to the auditory nerve. Electric current spreads in the tissue and neighboring electrode contacts cannot be considered independent stimulation sources. Simultaneous transfer of information at adjacent electrodes may lead to deleterious interactions. Therefore, contemporary coding strategies use sequential stimulation paradigms that avoid simultaneous stimulation at neighboring electrode contacts. These coding strategies provide good speech recognition in quiet listening environments but fail in noisy backgrounds. It has been argued that an increase in the number of independent channels that transfer information to the auditory nerve could improve patient performance in noisy listening environments. Therefore, an important objective in implant electrode design is to maximize the spatial selectivity of stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Balaban, C. D., Zhou, J., & Li, H. (2003). Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells. Hearing Research, 175, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Black, R. C., Clark, G. M., & Patrick, J. F. (1981). Current distribution measurements within the human cochlea. IEEE Transactions on Biomedical Engineering, 28(10), 721–725.

    Article  PubMed  CAS  Google Scholar 

  • Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268.

    Article  PubMed  CAS  Google Scholar 

  • Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., & Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816–824.

    Article  PubMed  CAS  Google Scholar 

  • Collins, L. M., Zwolan, T. A., & Wakefield, G. H. (1997). Comparison of electrode discrimination, pitch ranking, and pitch scaling data in postlingually deafened adult cochlear implant subjects. Journal of the Acoustical Society of America, 101(1), 440–455.

    Article  PubMed  CAS  Google Scholar 

  • Dorman, M. F., Dankowski, K., McCandless, G., & Smith, L. M. (1989). Consonant recognition as a function of the number of channels of stimulation by patients who use the Symbion cochlear implant. Ear and Hearing, 10, 288–291.

    Article  PubMed  CAS  Google Scholar 

  • Dorman, M. F., Loizou, P. C., & Rainey, D. (1997). Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. Journal of the Acoustical Society of America, 102, 2403–2411.

    Article  PubMed  CAS  Google Scholar 

  • Dorman, M. F., Loizou, P. C., Fitzke, J., & Tu, Z. (1998). The recognition of sentences in noise by normal-hearing listeners using stimulations of cochlear-implant signal processors with 6–20 channels. Journal of the Acoustical Society of America, 104, 3583–3585.

    Article  PubMed  CAS  Google Scholar 

  • Duke, A. R., Cayce, J. M., Malphrus, J. D., Konrad, P., Mahadevan-Jansen, A., & Jansen, E. D. (2009). Combined optical and electrical stimulation of neural tissue in vivo. Journal of Biomedical Optics Letters, 14(6), 060501–060501 - 060501–060503.

    Google Scholar 

  • Eddington, D. K., Rabinowitz, W. R., Tierney, J., Noel, V., & Whearty, M. (1997). Speech processors for auditory prostheses. 8th Quaterly progress report, NIH Contract N01-DC-6-2100.

    Google Scholar 

  • Ehret, G., & Merzenich, M. M. (1988). Neuronal discharge rate is unsuitable for encoding sound intensity at the inferior-colliculus level. Hearing Research, 35(1), 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, K. E., Shannon, R. V., & Slattery, W. H. (1997). Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. Journal of Speech, Language, and Hearing Research, 40(5), 1201–1215.

    PubMed  CAS  Google Scholar 

  • Fried, N. M., Lagoda, G. A., Scott, N. J., Su, L. M., & Burnett, A. L. (2008). Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser. Journal of Endourology, 22(3), 409–413.

    Article  PubMed  Google Scholar 

  • Friesen, L. M., Shannon, R. V., Baskent, D., & Wang, X. (2001). Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. Journal of the Acoustical Society of America, 110(2), 1150–1163.

    Article  PubMed  CAS  Google Scholar 

  • Geier, L. V., & Norton, S. (1992). The effect of limiting the number of Nucleus 22 cochlear implant electrodes programmed on speech perception. Ear and Hearing, 13, 340–348.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, D. D. (1990). A cochlear frequency-position function for several species–29 years later. Journal of the Acoustical Society of America, 87(6), 2592–2605.

    Article  PubMed  CAS  Google Scholar 

  • Güler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., & Caterina, M. (2002). Heat-evoked activation of the ion channel, TRPV4. Journal of Neuroscience, 22(15), 6408–6414.

    PubMed  Google Scholar 

  • Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200 nm to 200 μm region. Applied Optics, 12, 555–563.

    Article  PubMed  CAS  Google Scholar 

  • Harteneck, C., Plant, T. D., & Schulz, G. u. n. (2000). From worm to man: three subfamilies of TRP channels. Trends in Neuroscience, 23, 159–166.

    Google Scholar 

  • Hochmair, E. S., & Hochmair-Desoyer, I. J. (1983). Percepts elicited by different speech-coding strategies. Annals of the New York Academy of Sciences, 405, 268–279.

    Article  PubMed  CAS  Google Scholar 

  • Hochmair-Desoyer, I. J., Hochmair, E. S., Burian, K., & Stiglbrunner, H. K. (1983). Percepts from the Vienna cochlear prosthesis. Annals of the New York Academy of Sciences, 405, 292–306.

    Google Scholar 

  • Holmes, A., Kemker, F. J., & Merwin, G. (1987). The effects of varying the number of cohlear implant electrodes on speech perception. American Journal of Otology, 8, 240–246.

    PubMed  CAS  Google Scholar 

  • Izzo, A. D., Richter, C. P., Jansen, E. D., & Walsh Jr., J. T. (2006). Laser stimulation of the auditory nerve. Lasers in Surgery and Medicine, 38(8), 745–753.

    Article  PubMed  Google Scholar 

  • Izzo, A. D., Walsh, J. T., Jr., Jansen, E. D., Bendett, M., Webb, J., Ralph, H., & Richter, C. P. (2007). Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Transactions on Biomedical Engineering, 54(6, Pt. 1), 1108–1114.

    Google Scholar 

  • Jacques, S. L. (1992). Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surgical Clinics of North America, 72(3), 531–558.

    Google Scholar 

  • Kilney, P., Zimmerman-Phillips, S., Zwolan, T., & Kemink, J. (1992). Effects of channel number and place of stimulation on performance with the cochlear corporation multichannel implant. American Journal of Otology, 13, 117–123.

    Google Scholar 

  • Kral, A., Hartmann, R., Mortazavi, D., & Klinke, R. (1998). Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hearing Research, 121(1–2), 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, R. H., Fortin, D. L., & Trauner, D. (2009). New photochemical tools for controlling neuronal activity. Current Opinion in Neurobiology, 19(5), 544–552.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, D. (1993). New processing strategies for multichannel cochlear prosthesis. Progress in Brain Research, 97, 331–321.

    Article  Google Scholar 

  • Lawson, D. (1996). Speech processors of auditory prostheses. Third quarterly progress report, NIH Contract No1-DC-5-2103.

    Google Scholar 

  • Lee, D. J., Hancock, K. E., Mukerji, S., & Brown, M. C. (2009). Optical stimulation of the central auditory system. Abstracts of the Association for Research in Otolaryngology, 32, 314.

    Google Scholar 

  • Littlefield, P. D., Vujanovic, I., Mundi, J., Matic, A. I., & Richter, C.-P. (2010). Laser stimulation of single auditory nerve fibers. The Laryngoscope (in press).

    Google Scholar 

  • McKay, C. M., McDermott, H. J., & Clark, G. M. (1994). The beneficial use of channel interactions for improvement of speech perception for multichannel cochlear implants. Australian Journal of Audiology, 15(Suppl. 2), 20–21.

    Google Scholar 

  • Middlebrooks, J. C., & Snyder, R. L. (2007). Auditory prosthesis with a penetrating nerve array. Journal of the Association for Research in Otolaryngology, 8(2), 258–279.

    Article  PubMed  Google Scholar 

  • Montell, C. (2005). The TRP superfamily of cation channels. Science Signaling: The Signal Transduction Knowledge Environment, 272, re3.

    Google Scholar 

  • Moreno, L. E., Rajguru S. R., Matic A. I., Yerram N., Robinson A., Hwang M., Stock SR., & Richter C. P. Infrared neural stimulation: beam path in the guinea pig cochlea, Hear Res (in press).

    Google Scholar 

  • Müller, M. (1996). Frequenz- und Intensitätsanalyse im Innenohr der Säuger (Unpublished Habilitationsschrift). Johann Wolfgang Goethe-Universität, Frankfurt/Main, Germany.

    Google Scholar 

  • O’Leary, S. J., Black, R. C., & Clark, G. M. (1985). Current distributions in the cat cochlea: a modelling and electrophysiological study. Hearing Research, 18(3), 273–281.

    Article  PubMed  Google Scholar 

  • O’Leary, S. J., Richardson, R. R., & McDermott, H. J. (2009). Principles of design and biological approaches for improving the selectivity of cochlear implant electrodes. Journal of Neural Engineering, 6(5), 055002.

    Article  PubMed  Google Scholar 

  • Rajguru S. M., Matic A. I., Robinson A. M., Fishman A. J., Moreno L. E., Bradley A., Vujanovic I., Breen J., Wells J. D., Bendett M., Richter C. P. (2010). Optical cochlear implants: Evaluation of surgical approach and laser parameters in cats, Hear Res, 269 (1-2): 102–111.

    Article  PubMed  Google Scholar 

  • Richter, C. P., Bayon, R., Izzo, A. D., Otting, M., Suh, E., Goyal, S., Hotaling, J., & Walsh, J. T., Jr. (2008). Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hearing Research, 242(1–2), 42–51.

    Article  PubMed  Google Scholar 

  • Richter, C-P., Rajguru, S. M., Matic, A. I., Moreno E. L., Fishman, A. J., Robinson, A. M., Suh, E., Walsh, Jr. JT. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements, (in review).

    Article  PubMed  Google Scholar 

  • Robertson, D. (1984). Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hearing Research, 15(2), 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein, J. T., Wilson, B. S., Finley, C. C., & Abbas, P. J. (1999). Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research, 127(1–2), 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, R. V., Fu, Q. J., & Galvin, J., 3 rd. (2004). The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Oto-Laryngologica Supplement, 552, 50–54.

    Article  Google Scholar 

  • Snyder, R. L., Bierer, J. A., & Middlebrooks, J. C. (2004). Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. Journal of the Association for Research in Otolaryngology, 5(3), 305–322.

    Article  PubMed  Google Scholar 

  • Snyder, R. L., Middlebrooks, J. C., & Bonham, B. H. (2008). Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hearing Research, 235(1–2), 23–38.

    Article  PubMed  Google Scholar 

  • Suh, E., Izzo, A. D., Walsh Jr., J. T., & Richter, C.-P. (2007). The role of Transient Receptor Potential channels in neural activation. Abstracts of the Association for Research in Otolaryngology, 30, 109.

    Google Scholar 

  • Suh, E., Matic, A. I., Otting, M., Walsh Jr., J. T., & Richter, C.-P. (2009). Optical stimulation in mice which lack the TRPV1 channel. Proceedings of SPIE, Volume 7180, 71801–71805.

    Google Scholar 

  • Takumida, M., Kubo, N., Ohtani, M., Suzuka, Y., & Anniko, M. (2005). Transient receptor potential channels in the inner ear: Presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Oto-Laryngologica, 125, 929–934.

    Article  PubMed  Google Scholar 

  • Teudt, I. U., Nevel, A., Izzo, A. D., Walsh, J. J. T., & Richter, C.-P. (2007). Optical stimulation of the facial nerve–a new monitoring technique? The Laryngoscope, 117, 1641–1647.

    Article  PubMed  Google Scholar 

  • Tsuji, J., & Liberman, M. C. (1997). Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections. Journal of Comparative Neurology, 381(2), 188–202.

    Article  PubMed  CAS  Google Scholar 

  • Turner, C. W., Souza, P. E., & Forget, L. N. (1995). Use of temporal envelop cues in speech recognition by normal and hearing-impaired listeners. Journal of the Acoustical Society of America, 97, 2568–2576.

    Article  PubMed  CAS  Google Scholar 

  • van den Honert, C., & Stypulkowski, P. H. (1987). Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing Research, 29(2–3), 195–206.

    PubMed  Google Scholar 

  • Vanpoucke, F., Zarowski, A., Casselman, J., Frijns, J., & Peeters, S. (2004). The facial nerve canal: an important cochlear conduction path revealed by Clarion electrical field imaging. Otology & Neurotology, 25(3), 282–289.

    Article  Google Scholar 

  • Wells, J., Kao, C., Jansen, E. D., Konrad, P., & Mahadevan-Jansen, A. (2005a). Application of infrared light for in vivo neural stimulation. Journal of Biomedical Optics, 10, 064003.

    Article  PubMed  Google Scholar 

  • Wells, J. D., Kao, C., Mariappan, K., Albea, J., Jansen, E. D., Konrad, P., & Mahadevan-Jansen, A. (2005b). Optical stimulation of neural tissue in vivo. Optics Letters, 30(5), 504–506.

    Article  PubMed  Google Scholar 

  • Wells, J., Konrad, P., Kao, C., Jansen, E. D., & Mahadevan-Jansen, A. (2007a). Pulsed laser versus electrical energy for peripheral nerve stimulation. Journal of Neuroscience Methods, 163(2), 326–337.

    Article  PubMed  Google Scholar 

  • Wells, J., Kao, C., Konrad, P., Milner, T., Kim, J., Mahadevan-Jansen, A., & Jansen, E. D. (2007b). Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophysical Journal, 93(7), 2567–2580.

    Article  PubMed  CAS  Google Scholar 

  • Wells, J. D., Thomsen, S., Whitaker, P., Jansen, E. D., Kao, C. C., Konrad, P. E., & Mahadevan-Jansen, A. (2007c). Optically mediated nerve stimulation: identification of injury thresholds. Lasers in Surgery and Medicine, 39(6), 513–526.

    Article  PubMed  Google Scholar 

  • Wenzel, G. I., Balster, S., Zhang, K., Lim, H. H., Reich, U., Massow, O., Lubatschowski, H., Ertmer, W., Lenarz, T., & Reuter, G. (2009). Green laser light activates the inner ear. Journal of Biomedical Optics, 14(4), 044007.

    Article  PubMed  Google Scholar 

  • Zhang, F., Wang, L. P., Boyden, E. S., & Deisseroth, K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 3(10), 785–792.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, J., Dai, C., Steyger, P. S., Kim, Y., Vass, Z., Ren, T., & Nuttall, A. L. (2003). Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of corti. Journal of Neurophysiology, 90(1), 444–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project has been funded with federal funds from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN260-2006-00006-C/NIH No. N01-DC-6-0006, NIH grant 1R41DC008515-01, NIH grant 1R41DC008515-02, NIH grant F31 DC008246-01, E.R. Capita Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Peter Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Richter, CP., Matic, A.I. (2011). Optical Stimulation of the Auditory Nerve. In: Zeng, FG., Popper, A., Fay, R. (eds) Auditory Prostheses. Springer Handbook of Auditory Research, vol 39. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9434-9_6

Download citation

Publish with us

Policies and ethics