Abstract
Improvements in cochlear implant devices during the last decade have mainly been achieved through novel coding strategies rather than through improvement of the neural interface. The neural interface, however, is a bottleneck for transferring information from the cochlear implant to the auditory nerve. Electric current spreads in the tissue and neighboring electrode contacts cannot be considered independent stimulation sources. Simultaneous transfer of information at adjacent electrodes may lead to deleterious interactions. Therefore, contemporary coding strategies use sequential stimulation paradigms that avoid simultaneous stimulation at neighboring electrode contacts. These coding strategies provide good speech recognition in quiet listening environments but fail in noisy backgrounds. It has been argued that an increase in the number of independent channels that transfer information to the auditory nerve could improve patient performance in noisy listening environments. Therefore, an important objective in implant electrode design is to maximize the spatial selectivity of stimulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balaban, C. D., Zhou, J., & Li, H. (2003). Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells. Hearing Research, 175, 165–170.
Black, R. C., Clark, G. M., & Patrick, J. F. (1981). Current distribution measurements within the human cochlea. IEEE Transactions on Biomedical Engineering, 28(10), 721–725.
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268.
Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., & Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816–824.
Collins, L. M., Zwolan, T. A., & Wakefield, G. H. (1997). Comparison of electrode discrimination, pitch ranking, and pitch scaling data in postlingually deafened adult cochlear implant subjects. Journal of the Acoustical Society of America, 101(1), 440–455.
Dorman, M. F., Dankowski, K., McCandless, G., & Smith, L. M. (1989). Consonant recognition as a function of the number of channels of stimulation by patients who use the Symbion cochlear implant. Ear and Hearing, 10, 288–291.
Dorman, M. F., Loizou, P. C., & Rainey, D. (1997). Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. Journal of the Acoustical Society of America, 102, 2403–2411.
Dorman, M. F., Loizou, P. C., Fitzke, J., & Tu, Z. (1998). The recognition of sentences in noise by normal-hearing listeners using stimulations of cochlear-implant signal processors with 6–20 channels. Journal of the Acoustical Society of America, 104, 3583–3585.
Duke, A. R., Cayce, J. M., Malphrus, J. D., Konrad, P., Mahadevan-Jansen, A., & Jansen, E. D. (2009). Combined optical and electrical stimulation of neural tissue in vivo. Journal of Biomedical Optics Letters, 14(6), 060501–060501 - 060501–060503.
Eddington, D. K., Rabinowitz, W. R., Tierney, J., Noel, V., & Whearty, M. (1997). Speech processors for auditory prostheses. 8th Quaterly progress report, NIH Contract N01-DC-6-2100.
Ehret, G., & Merzenich, M. M. (1988). Neuronal discharge rate is unsuitable for encoding sound intensity at the inferior-colliculus level. Hearing Research, 35(1), 1–7.
Fishman, K. E., Shannon, R. V., & Slattery, W. H. (1997). Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. Journal of Speech, Language, and Hearing Research, 40(5), 1201–1215.
Fried, N. M., Lagoda, G. A., Scott, N. J., Su, L. M., & Burnett, A. L. (2008). Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser. Journal of Endourology, 22(3), 409–413.
Friesen, L. M., Shannon, R. V., Baskent, D., & Wang, X. (2001). Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. Journal of the Acoustical Society of America, 110(2), 1150–1163.
Geier, L. V., & Norton, S. (1992). The effect of limiting the number of Nucleus 22 cochlear implant electrodes programmed on speech perception. Ear and Hearing, 13, 340–348.
Greenwood, D. D. (1990). A cochlear frequency-position function for several species–29 years later. Journal of the Acoustical Society of America, 87(6), 2592–2605.
Güler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., & Caterina, M. (2002). Heat-evoked activation of the ion channel, TRPV4. Journal of Neuroscience, 22(15), 6408–6414.
Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200 nm to 200 μm region. Applied Optics, 12, 555–563.
Harteneck, C., Plant, T. D., & Schulz, G. u. n. (2000). From worm to man: three subfamilies of TRP channels. Trends in Neuroscience, 23, 159–166.
Hochmair, E. S., & Hochmair-Desoyer, I. J. (1983). Percepts elicited by different speech-coding strategies. Annals of the New York Academy of Sciences, 405, 268–279.
Hochmair-Desoyer, I. J., Hochmair, E. S., Burian, K., & Stiglbrunner, H. K. (1983). Percepts from the Vienna cochlear prosthesis. Annals of the New York Academy of Sciences, 405, 292–306.
Holmes, A., Kemker, F. J., & Merwin, G. (1987). The effects of varying the number of cohlear implant electrodes on speech perception. American Journal of Otology, 8, 240–246.
Izzo, A. D., Richter, C. P., Jansen, E. D., & Walsh Jr., J. T. (2006). Laser stimulation of the auditory nerve. Lasers in Surgery and Medicine, 38(8), 745–753.
Izzo, A. D., Walsh, J. T., Jr., Jansen, E. D., Bendett, M., Webb, J., Ralph, H., & Richter, C. P. (2007). Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Transactions on Biomedical Engineering, 54(6, Pt. 1), 1108–1114.
Jacques, S. L. (1992). Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surgical Clinics of North America, 72(3), 531–558.
Kilney, P., Zimmerman-Phillips, S., Zwolan, T., & Kemink, J. (1992). Effects of channel number and place of stimulation on performance with the cochlear corporation multichannel implant. American Journal of Otology, 13, 117–123.
Kral, A., Hartmann, R., Mortazavi, D., & Klinke, R. (1998). Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hearing Research, 121(1–2), 11–28.
Kramer, R. H., Fortin, D. L., & Trauner, D. (2009). New photochemical tools for controlling neuronal activity. Current Opinion in Neurobiology, 19(5), 544–552.
Lawson, D. (1993). New processing strategies for multichannel cochlear prosthesis. Progress in Brain Research, 97, 331–321.
Lawson, D. (1996). Speech processors of auditory prostheses. Third quarterly progress report, NIH Contract No1-DC-5-2103.
Lee, D. J., Hancock, K. E., Mukerji, S., & Brown, M. C. (2009). Optical stimulation of the central auditory system. Abstracts of the Association for Research in Otolaryngology, 32, 314.
Littlefield, P. D., Vujanovic, I., Mundi, J., Matic, A. I., & Richter, C.-P. (2010). Laser stimulation of single auditory nerve fibers. The Laryngoscope (in press).
McKay, C. M., McDermott, H. J., & Clark, G. M. (1994). The beneficial use of channel interactions for improvement of speech perception for multichannel cochlear implants. Australian Journal of Audiology, 15(Suppl. 2), 20–21.
Middlebrooks, J. C., & Snyder, R. L. (2007). Auditory prosthesis with a penetrating nerve array. Journal of the Association for Research in Otolaryngology, 8(2), 258–279.
Montell, C. (2005). The TRP superfamily of cation channels. Science Signaling: The Signal Transduction Knowledge Environment, 272, re3.
Moreno, L. E., Rajguru S. R., Matic A. I., Yerram N., Robinson A., Hwang M., Stock SR., & Richter C. P. Infrared neural stimulation: beam path in the guinea pig cochlea, Hear Res (in press).
Müller, M. (1996). Frequenz- und Intensitätsanalyse im Innenohr der Säuger (Unpublished Habilitationsschrift). Johann Wolfgang Goethe-Universität, Frankfurt/Main, Germany.
O’Leary, S. J., Black, R. C., & Clark, G. M. (1985). Current distributions in the cat cochlea: a modelling and electrophysiological study. Hearing Research, 18(3), 273–281.
O’Leary, S. J., Richardson, R. R., & McDermott, H. J. (2009). Principles of design and biological approaches for improving the selectivity of cochlear implant electrodes. Journal of Neural Engineering, 6(5), 055002.
Rajguru S. M., Matic A. I., Robinson A. M., Fishman A. J., Moreno L. E., Bradley A., Vujanovic I., Breen J., Wells J. D., Bendett M., Richter C. P. (2010). Optical cochlear implants: Evaluation of surgical approach and laser parameters in cats, Hear Res, 269 (1-2): 102–111.
Richter, C. P., Bayon, R., Izzo, A. D., Otting, M., Suh, E., Goyal, S., Hotaling, J., & Walsh, J. T., Jr. (2008). Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hearing Research, 242(1–2), 42–51.
Richter, C-P., Rajguru, S. M., Matic, A. I., Moreno E. L., Fishman, A. J., Robinson, A. M., Suh, E., Walsh, Jr. JT. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements, (in review).
Robertson, D. (1984). Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hearing Research, 15(2), 113–121.
Rubinstein, J. T., Wilson, B. S., Finley, C. C., & Abbas, P. J. (1999). Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research, 127(1–2), 108–118.
Shannon, R. V., Fu, Q. J., & Galvin, J., 3 rd. (2004). The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Oto-Laryngologica Supplement, 552, 50–54.
Snyder, R. L., Bierer, J. A., & Middlebrooks, J. C. (2004). Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. Journal of the Association for Research in Otolaryngology, 5(3), 305–322.
Snyder, R. L., Middlebrooks, J. C., & Bonham, B. H. (2008). Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hearing Research, 235(1–2), 23–38.
Suh, E., Izzo, A. D., Walsh Jr., J. T., & Richter, C.-P. (2007). The role of Transient Receptor Potential channels in neural activation. Abstracts of the Association for Research in Otolaryngology, 30, 109.
Suh, E., Matic, A. I., Otting, M., Walsh Jr., J. T., & Richter, C.-P. (2009). Optical stimulation in mice which lack the TRPV1 channel. Proceedings of SPIE, Volume 7180, 71801–71805.
Takumida, M., Kubo, N., Ohtani, M., Suzuka, Y., & Anniko, M. (2005). Transient receptor potential channels in the inner ear: Presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Oto-Laryngologica, 125, 929–934.
Teudt, I. U., Nevel, A., Izzo, A. D., Walsh, J. J. T., & Richter, C.-P. (2007). Optical stimulation of the facial nerve–a new monitoring technique? The Laryngoscope, 117, 1641–1647.
Tsuji, J., & Liberman, M. C. (1997). Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections. Journal of Comparative Neurology, 381(2), 188–202.
Turner, C. W., Souza, P. E., & Forget, L. N. (1995). Use of temporal envelop cues in speech recognition by normal and hearing-impaired listeners. Journal of the Acoustical Society of America, 97, 2568–2576.
van den Honert, C., & Stypulkowski, P. H. (1987). Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing Research, 29(2–3), 195–206.
Vanpoucke, F., Zarowski, A., Casselman, J., Frijns, J., & Peeters, S. (2004). The facial nerve canal: an important cochlear conduction path revealed by Clarion electrical field imaging. Otology & Neurotology, 25(3), 282–289.
Wells, J., Kao, C., Jansen, E. D., Konrad, P., & Mahadevan-Jansen, A. (2005a). Application of infrared light for in vivo neural stimulation. Journal of Biomedical Optics, 10, 064003.
Wells, J. D., Kao, C., Mariappan, K., Albea, J., Jansen, E. D., Konrad, P., & Mahadevan-Jansen, A. (2005b). Optical stimulation of neural tissue in vivo. Optics Letters, 30(5), 504–506.
Wells, J., Konrad, P., Kao, C., Jansen, E. D., & Mahadevan-Jansen, A. (2007a). Pulsed laser versus electrical energy for peripheral nerve stimulation. Journal of Neuroscience Methods, 163(2), 326–337.
Wells, J., Kao, C., Konrad, P., Milner, T., Kim, J., Mahadevan-Jansen, A., & Jansen, E. D. (2007b). Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophysical Journal, 93(7), 2567–2580.
Wells, J. D., Thomsen, S., Whitaker, P., Jansen, E. D., Kao, C. C., Konrad, P. E., & Mahadevan-Jansen, A. (2007c). Optically mediated nerve stimulation: identification of injury thresholds. Lasers in Surgery and Medicine, 39(6), 513–526.
Wenzel, G. I., Balster, S., Zhang, K., Lim, H. H., Reich, U., Massow, O., Lubatschowski, H., Ertmer, W., Lenarz, T., & Reuter, G. (2009). Green laser light activates the inner ear. Journal of Biomedical Optics, 14(4), 044007.
Zhang, F., Wang, L. P., Boyden, E. S., & Deisseroth, K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 3(10), 785–792.
Zheng, J., Dai, C., Steyger, P. S., Kim, Y., Vass, Z., Ren, T., & Nuttall, A. L. (2003). Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of corti. Journal of Neurophysiology, 90(1), 444–455.
Acknowledgements
This project has been funded with federal funds from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN260-2006-00006-C/NIH No. N01-DC-6-0006, NIH grant 1R41DC008515-01, NIH grant 1R41DC008515-02, NIH grant F31 DC008246-01, E.R. Capita Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Richter, CP., Matic, A.I. (2011). Optical Stimulation of the Auditory Nerve. In: Zeng, FG., Popper, A., Fay, R. (eds) Auditory Prostheses. Springer Handbook of Auditory Research, vol 39. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9434-9_6
Download citation
DOI: https://doi.org/10.1007/978-1-4419-9434-9_6
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-9433-2
Online ISBN: 978-1-4419-9434-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)