Skip to main content

Platelet Formation, Platelet Density and Platelet Ageing

  • Chapter
Platelet Heterogeneity

Abstract

Microscopic examination of both platelets and megakaryocytes shows them to vary widely in size and ultrastructure. This structural diversity was noted by early investigators (Bunting 1909) and interest in its origin and significance has continued to the present day. While haemostasis is undoubtedly the major life-preserving function of platelets, several other functions have been attributed to them, such as phagocytosis, promotion of wound healing and IgE-dependent killing of schistosomes (Joseph et al. 1983). Platelets have also been implicated in inflammatory disease (Ginsberg 1981), atherosclerosis and thrombosis. There is little evidence at present that any of these functions are exclusively performed by distinct subsets of platelets analogous to the well-characterized subsets of the lymphocyte population. In general, platelet populations show continuous variation in structural or functional properties, although they are often divided up into arbitrary “subpopulations” for the purpose of analysis. While we must remain open to the possibility that categorically different types of platelets may exist, our main effort will continue to be directed towards understanding how this continuously variable platelet population arises and how it achieves its known functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amorosi E, Garg SK, Karpatkin S (1971) Heterogeneity of human platelets. IV. Identification of a young population with [75Se]selenomethionine. Br J Haematol 21:227–232

    Article  Google Scholar 

  • Bach AWJ, Lan NC, Johnson DL et al. (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci 85:4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Ballem PJ, Segal GM, Stratton JR, Gernsheimer T, Adamson JW, Slichter S (1987) Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. J Clin Invest 80:33–40

    Article  PubMed  CAS  Google Scholar 

  • Becker RP, De Bruyn PPH (1976) The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoids: a scanning electron microscopic investigation. Am J Anat 145:183–206

    Article  PubMed  CAS  Google Scholar 

  • Behnke O (1969) An electron microscope study of the rat megakaryocyte. II. Some aspects of platelet release and microtubules. J Ultrastruct Res 26:111–129

    Article  PubMed  CAS  Google Scholar 

  • Behnke O (1970) Microtubules in disk-shaped blood cells. Int Rev Exp Pathol 9:1–92

    PubMed  CAS  Google Scholar 

  • Behnke O, Tinggaard Pedersen N (1974) Ultrastructural aspects of megakaryocyte maturation and platelet release. In: Baldini MG, Ebbe S (eds) Platelets: production, function, transfusion and storage. Grune & Stratton, New York, pp 21–31

    Google Scholar 

  • Bessis M (1977) Blood smears reinterpreted. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Blajchman MA, Senyl AF, Hirsh J, Genton E, George JN (1981) Hemostatic function, survival and membrane glycoprotein changes in young versus old rabbit platelets. J Clin Invest 68:1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Bolton AE, Amess JAL, Lekhwani CP, Elliot P (1980) β-Thromboglobulin content of human blood platelets. Scand J Haematol 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Boneu B, Sie P, Caranobe C, Nouvel C, Bierme R (1980) Malondialdehyde (MDA) reappearance in human platelet density populations after a single intake of aspirin. Thromb Res 19:609–620

    Article  PubMed  CAS  Google Scholar 

  • Boneu B, Vigoni F, Boneu A, Caranobe C, Sie P (1982a) Further studies on the relationship between platelet buoyant density and age. Am J Haematol 13:239–246

    Article  CAS  Google Scholar 

  • Boneu B, Robert A, Sie P et al. (1982b) Coulter counter studies of hypotonic-induced macrothrombocytosis in normal subjects and in idiopathic thrombocytopenic purpura patients. Br J Haematol 51:305–311

    PubMed  CAS  Google Scholar 

  • Boneu B, Bugat R, Boneu A, Eche N, Sie P, Combes P-F (1984) Exhausted platelets in patients with malignant solid tumours without evidence of active consumption coagulopathy. Eur J Cancer Clin Oncol 20:899–903

    Article  PubMed  CAS  Google Scholar 

  • Booyse FM, Hoveke TP, Rafelson ME (1968) Studies on human platelets. II. Protein synthetic activity of various platelet populations. Biochim Biophys Acta 57:660–663

    Google Scholar 

  • Bunting (1909) Blood-platelet and megalokaryocyte reactions in the rabbit. J Exp Med 11:541–522

    Article  PubMed  CAS  Google Scholar 

  • Caranobe C, Sie P, Nouvel C, Laurent G, Pris J, Boneu B. (1980) Platelets in myeloproliferative disorders. II. Serotonin uptake and storage: Correlations with mepacrine labelled dense bodies and with platelet density. Scand J Haematol 25:289–295

    Article  PubMed  CAS  Google Scholar 

  • Caranobe C, Sie P, Boneu B (1982) Serotonin uptake and storage in human platelet density subpopulations. Br J Haematol 52:253–258

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain KG, Penington DG (1988a) Monoamine oxidase and other mitochondrial enzymes in density subpopulations of human platelets. Thromb Haemostas 59:29–33

    CAS  Google Scholar 

  • Chamberlain KG, Penington DG (1988b) Correlation between megakaryocyte-platelet regeneration time and mean platelet volume. Thromb Res 50:739–744

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain KG, Froebel M, Macpherson J, Penington DG (1988a) Morphometric analysis of density subpopulations of normal human platelets. Thromb Haemostas 60:44–49

    CAS  Google Scholar 

  • Chamberlain KG, Tong M, Chiu E, Penington DG (1988b) The use of monoamine oxidase inhibition to estimate megakaryocyte-platelet regeneration time (MPRT). Thromb Res 49:425–435

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain KG, Tong M, Chiu E, Penington DG (1989a) The relationship of human platelet density to platelet age: platelet population labelling by monoamine oxidase inhibition. Blood 73:1218–1225

    PubMed  CAS  Google Scholar 

  • Chamberlain KG, Seth P, Jones MK, Penington DG (1989b) Subcellular composition of platelet density subpopulations prepared using continuous Percoll gradients. Br J Haematol 72: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Charmatz A, Karpatkin S (1974) Heterogeneity of rabbit platelets. I. Employment of an albumin density gradient for the separation of a young platelet population identified with 75Se-seleno-methionine. Thromb Diath Haemorrh 31:485–492

    PubMed  CAS  Google Scholar 

  • Clark MR (1988) Senescence of red blood cells: progress and problems. Physiol Rev 68:503–554

    PubMed  CAS  Google Scholar 

  • Collier A, Watson HHK, Matthews DM, Strain L, Ludlam CA, Clarke BF (1986) Platelet-density analysis and intraplatelet granule content in young insulin-dependent diabetics. Diabetes 35:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Corash L (1989) The relationship between megakaryocyte ploidy and platelet volume. Blood Cells 15:81–107

    PubMed  CAS  Google Scholar 

  • Corash L, Shafer B (1982) Use of asplenic rabbits to demonstrate that platelet age and density are related. Blood 60:166–171

    PubMed  CAS  Google Scholar 

  • Corash L, Tan H, Gralnick HR (1977) Heterogeneity of human whole blood platelet subpopulations. I. Relationship between buoyant density, cell volume, and ultrastructure. Blood 49:71–87

    PubMed  CAS  Google Scholar 

  • Corash L, Shafer B, Perlow M (1978) Heterogeneity of human whole blood platelet subpopulations. II. Use of a subhuman primate model to analyse the relationship between density and platelet age. Blood 52:726–734

    PubMed  CAS  Google Scholar 

  • Corash L, Costa JL, Shafer B, Donlon JA, Murphy D (1984) Heterogeneity of human blood subpopulations. III. Density-dependent differences in subcellular constituents. Blood 64:185–193

    PubMed  CAS  Google Scholar 

  • Dawes J, Smith RC, Pepper DS (1978) The release, distribution, and clearance of human β-thromboglobulin and platelet factor 4. Thromb Res 12:851–861

    Article  PubMed  CAS  Google Scholar 

  • De Bruyn PPH (1981) Structural substrates of bone marrow function. Seminars Haematol 18:179–193

    Google Scholar 

  • Djaldetti M, Fishman P, Bessler H, Notti I (1979) SEM observations on the mechanism of platelet release from megakaryocytes. Thromb Haemostas 42:611–620

    CAS  Google Scholar 

  • Duyvené de Wit LJ, Badenhorst PN, Heyns A du P (1987) Ultrastructural morphometric observations on serial sectioned human blood platelet subpopulations. Eur J Cell Biol 43:408–411

    PubMed  Google Scholar 

  • Eason CT, Pattison A, Howells DD, Mitcheson J, Bonner FW (1986) Platelet population profiles: significance of species variation and drug-induced changes. J Appl Toxicol 6:437–441

    Article  PubMed  CAS  Google Scholar 

  • Eldor A, Levine RF, Caine YG, Hyam E, Vlodavsky I (1986) Megakaryocyte interaction with the subendothelial extracellular matrix. Prog Clin Biol Res 215:399–404

    PubMed  CAS  Google Scholar 

  • Fabris F, Randi ML, Casonato A, Zanon RDB, Bonvicini P, Girolami A (1984) Clinical significance of beta-thromboglobulin in patients with high platelet count. Acta Haemat 71:32–38

    Article  PubMed  CAS  Google Scholar 

  • Files JC, Malpass TW, Yee EK, Ritchie JL, Harker LA (1981) Studies of human platelet α-granule release in vivo. Blood 58:607–618

    PubMed  CAS  Google Scholar 

  • Fox JEB, Phillips DR (1983) Polymerization and organization of actin filaments within platelets. Seminars Haematol 20:243–260

    CAS  Google Scholar 

  • Garg SK, Amorosi EL, Karpatkin S (1971) Use of the megathrombocyte as an index of megakaryocyte number. New Engl J Med 284:11–17

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg AD, Aster RH (1972) Changes associated with platelet aging. Thromb Diath Haemorrh 27:407–415

    Google Scholar 

  • Ginsberg MH (1981) Role of platelets in inflammation and rheumatic disease. Adv Inflammation Res 2:53–71

    CAS  Google Scholar 

  • Haller CJ, Radley JM (1983) Time-lapse cinemicrography and scanning electron microscopy of platelet formation by megakaryocytes. Blood cells 9: 407–418

    PubMed  CAS  Google Scholar 

  • Han P, Butt RW, Turpie AGG, Walker WHC, Genton E (1980) Beta-thromboglobulin radioimmunoassay: a laboratory characterization and evaluation. J Immunoassay 1:211–227

    Article  PubMed  CAS  Google Scholar 

  • Handagama PJ, Jain NC, Kono CS, Feldman BF (1986) Scanning electron microscopic studies of megakaryocytes and platelet formation in the dog and rat. Am J Vet Res 47:2454–2460

    PubMed  CAS  Google Scholar 

  • Handagama PJ, Feldman BF, Jain NC, Farver TB, Kono CS (1987a) Circulating proplatelets: isolation and quantitation in healthy rats and in rats with induced acute blood loss. Am J Vet Res 48:962–965

    PubMed  CAS  Google Scholar 

  • Handagama PJ, Jain NC, Feldman BF, Kono CS (1987b) Scanning electron microscope study of platelet release by canine megakaryocytes in vitro. Am J Vet Res 48:1003–1006

    PubMed  CAS  Google Scholar 

  • Handagama PJ, Feldman BF, Jain NC, Farver TB, Kono CS (1987c) In vitro platelet release by rat megakaryocytes: effect of metabolic inhibitors and eytoskeletal disrupting agents. Am J Vet Res 48:1142–1146

    PubMed  CAS  Google Scholar 

  • Handagama PJ, Jain NC, Feldman BF, Farver TB, Kono CS (1987d) In vitro platelet release by rat megakaryocytes: effect of heterologous antiplatelet serum. Am J Vet Res 48:1147–1149

    PubMed  CAS  Google Scholar 

  • Hanson SR, Slichter SJ (1985) Platelet kinetics in patients with bone marrow hypoplasia: evidence for a fixed platelet requirement. Blood 66:1105–1109

    PubMed  CAS  Google Scholar 

  • Haver VM, Gear ARL (1981) Functional fractionation of platelets. J Lab Clin Med 97:187–204

    PubMed  CAS  Google Scholar 

  • Hirsh J, Glynn MF, Mustard JF (1968) The effect of platelet age on platelet adherence to collagen. J Clin Invest 47:466–473

    Article  PubMed  CAS  Google Scholar 

  • Holme S, Murphy S (1983) Platelet storage at 22 °C for transfusion: interrelationship of platelet density and size, medium pH, and viability after in vivo infusion. J Lab Clin Med 101:161–174

    PubMed  CAS  Google Scholar 

  • Jackson CW (1989) Animal models with inherited hematopoietic abnormalities as tools to study thrombopoiesis. Blood Cells 15:237–253

    PubMed  CAS  Google Scholar 

  • Jarrott B, Vajda FJE (1987) The current status of monoamine oxidase and its inhibitors. Med J Aust 146:634–638

    PubMed  CAS  Google Scholar 

  • Johnson CA, Abildgaard CF, Schulman I (1971) Functional studies of young versus old platelets in a patient with chronic thrombocytopenia. Blood 37:163–171

    Google Scholar 

  • Joseph M, Auriault C, Capron A, Vorng H, Viens P (1983) A new function for platelets: IgE-dependent killing of schistosomes. Nature 303:810–812

    Article  PubMed  CAS  Google Scholar 

  • Kalmin ND, Wilson MJ, Liles BA (1983) In vitro assessment of platelet damage during rotator storage. Am J Clin Pathol 79:719–721

    PubMed  CAS  Google Scholar 

  • Karpatkin S (1969a) Heterogeneity of human platelets. I. Metabolic and kinetic evidence suggestive of young and old platelets. J Clin Invest 48:1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Karpatkin S (1969b) Heterogeneity of human platelets II. Functional evidence suggestive of young and old platelets. J Clin Invest 48:1083–1087

    Article  PubMed  CAS  Google Scholar 

  • Karpatkin S (1972) Human platelet senescence. Ann Rev Med 23:101–128

    Article  PubMed  CAS  Google Scholar 

  • Karpatkin S (1978) Heterogeneity of human platelets. VI. Correlation of platelet function with platelet volume. Blood 51:307–316

    PubMed  CAS  Google Scholar 

  • Karpatkin S, Strick N (1972) Heterogeneity of human platelets. V. Differences in glycolytic and related enzymes with possible reference to platelet age. 51:1235–1242

    CAS  Google Scholar 

  • Kieffer N, Guichard J, Farcet J-P, Vainchenker W, Breton-Gorius J (1987) Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem 164:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kraytman M (1973) Platelet size in thrombocytopenias and thrombocytosis of various origin. Blood 41:587–598

    PubMed  CAS  Google Scholar 

  • Larrimer NR, Balcerzak SP, Metz EN, Lee RE (1970) Surface structure of normal human platelets. Am J Med Sci 259:242–256

    Article  PubMed  CAS  Google Scholar 

  • Leif RC, Vinograd J (1964) The distribution of buoyant density of human erythrocytes in bovine albumin solutions. Proc Natl Acad Sci 51:520–528

    Article  PubMed  CAS  Google Scholar 

  • Leven RM, Nachmias VT (1988) Microtubule coils occur in intact megakaryocytes. Blood Cells 13:509–511

    PubMed  CAS  Google Scholar 

  • Leven RM, Yee MK (1987) Megakaryocyte morphogenesis stimulated in vitro by whole and partially fractionated thrombocytopenic plasma: a model system for the study of platelet formation. Blood 69:1046–1052

    PubMed  CAS  Google Scholar 

  • Levin J, Bessman JD (1983) The inverse relation between platelet volume and platelet number: abnormalities in hematologic disease and evidence that platelet size does not correlate with platelet age. J Lab Clin Med 101:295–307

    PubMed  CAS  Google Scholar 

  • Levine RF, Fedorko ME (1976) Isolation of intact megakaryocytes from guinea pig femoral marrow. Successful harvest made possible with inhibitors of platelet aggregation: enrichment achieved with a two-step separation technique. J Cell Biol 69:159–172

    Article  PubMed  CAS  Google Scholar 

  • Lichman MA, Chamberlain JK, Simon W, Santillo PA (1978) Parasinusoidal location of megakaryocytes in marrow: A determinant of platelet release. Am J Haematol 4:303–312

    Article  Google Scholar 

  • Loftus JC, Choate J, Albrecht RM (1984) Platelet activation and cytoskeletal reorganization: high voltage electron microscopic examination of intact and triton-extracted whole mounts. J Cell Biol 98:2019–2025

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Penington DG (1983) The relationship between the age and density of circulating 51Cr labelled platelets in the sub-human primate. Thromb Res 30:157–164

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Trowbridge EA (1982) Theoretical requirements for the density separation of platelets with comparison of continuous and discontinuous gradients. Thromb Res 27:513–522

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Shaw T, Jakubowski J, Penington DG, Martin TJ (1981) Production of thromboxane B2 by platelets is related to their density. Thromb Haemost 46:198

    Google Scholar 

  • Martin JF, Shaw T, Heggie J, Penington DG (1983a) Measurement of the density of human platelets and its relationship to volume. Br J Haematol 54:337–352

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Slater DN, Trowbridge EA (1983b) Abnormal intrapulmonary platelet production: a possible cause of vascular and lung disease. Lancet i:793–796

    Article  Google Scholar 

  • Martin JF, Plumb J, Kilby RS, Kishk YT (1983c) Changes in platelet volume and density in myocardial infarction. Br Med J 287:456–459

    Article  CAS  Google Scholar 

  • Mattson JC, Zuiches CA (1981) Elucidation of the platelet cytoskeletal. Ann NY Acad Sci 370:11–21

    Article  PubMed  CAS  Google Scholar 

  • McDonald JWD, Ali M (1983) Recovery of cyclo-oxygenase activity after aspirin in populations of platelets separated on Stractan density gradients. Prostaglandins Leukotrienes Med 12:245–252

    Article  CAS  Google Scholar 

  • McLeod DL, Shreeve MM, Axelrad AA (1976) Induction of megakaryocyte colonies with platelet formation in vitro. Nature 261:492–494

    Article  PubMed  CAS  Google Scholar 

  • Mezzano D, Hwang K-L, Catalano P, Aster RH (1981) Evidence that platelet buoyant density, but not size, correlates with platelet age in man. Am J Hematol 11:61–76

    Article  PubMed  CAS  Google Scholar 

  • Mezzano D, Aranda E, Rodriguez S, Foradori A, Lira P (1984a) Increase in density and accumulation of serotonin by human ageing platelets. Am J Hematol 17:11–21

    Article  PubMed  CAS  Google Scholar 

  • Mezzano D, Aranda E, Foradori A, Rodriguez S, Lira P (1984b) Kinetics of platelet density subpopulations in splenectomised mongrel dogs. Am J Hematol 17:373–382

    Article  PubMed  CAS  Google Scholar 

  • Minter FM, Ingram M (1970) Platelet volume: density relations in acutely bled dogs. Br J Haematol 20:55–68

    Article  Google Scholar 

  • Murphy S, Gardner FH (1971) Platelet storage at 22 °C: Metabolic, morphologic and functional studies. J Clin Invest 50:370–377

    Article  PubMed  CAS  Google Scholar 

  • Muto M (1976) A scanning and transmission electron microscopic study on rat bone marrow sinuses and transmural migration of blood cells. Arch Histol Jap 39:51–66

    PubMed  CAS  Google Scholar 

  • Nubile G, Gregoria MD, Ridolfi D, D’Alonzo L, Izzi L (1987) Aggregazione piastrinca indotta da adenosin difosfata, collagene ed adrenalina nelle sottopopolazioni piastriniche umane. Quad Sclavo Diagn 23:331–340

    PubMed  CAS  Google Scholar 

  • Packham MA, Guccione MA, O’Brien KM (1985) Duration of the effect of aspirin on the synthesis of thromboxane by density subpopulations of rabbit platelets stimulated with thrombin. Blood 66:287–290

    PubMed  CAS  Google Scholar 

  • Paulus JM, Bury J, Grosdent JC (1979) Control of platelet territory development in megakaryocytes. Blood Cells 5:59–88

    PubMed  CAS  Google Scholar 

  • Paulus JM, Esch L, Grosdent JC, Goddet A (1986) Deviation from lognormality in platelet volume distributions: inferences about the mechanism of thrombopoiesis. Prog Clin Biol Res 215:417–426

    PubMed  CAS  Google Scholar 

  • Payne CM (1981) Platelet satellitism. Am J Pathol 103:116–128

    PubMed  CAS  Google Scholar 

  • Penington DG (1987) Thrombopoiesis. In: Bloom AL, Thomas DP (eds) Haemostasis and thrombosis (2nd edn). Churchill Livingstone, Edinburgh London Melbourne New York, pp 1–8

    Google Scholar 

  • Penington DG, Streatfield K (1975) Heterogeneity of megakaryocytes and platelets. Ser Haemat 8:22–48

    CAS  Google Scholar 

  • Penington DG, Tong M (1987) Correspondence. Blood 70:600–601

    Google Scholar 

  • Penington DG, Streatfield K, Roxburgh AE (1976) Megakaryocytes and the heterogeneity of circulating platelets. Br J Haematol 34:639–653

    Article  PubMed  CAS  Google Scholar 

  • Pryzwansky KB (1987) Human leukocytes as viewed by stereo high-voltage electronmicroscopy. Blood Cells 12:505–530

    PubMed  CAS  Google Scholar 

  • Pulvertaft RJV (1958) The effect of reduced oxygen tension on platelet formation in vitro. J Clin Pathol 11:535–542

    Article  PubMed  CAS  Google Scholar 

  • Pulvertaft RJV, Humble JG (1956) Culture de moelle osseuse sur lames tournantes. Rev Hemat 11:349–377

    PubMed  Google Scholar 

  • Radley JM (1986) Ultrastructural aspects of platelet production. Prog Clin Biol Res 215:387–398

    PubMed  CAS  Google Scholar 

  • Radley JM (1988) Commentary. Blood Cells 13:459–461

    Google Scholar 

  • Radley JM, Haller CJ (1982) The demarcation membrane system of the megakaryocyte: a misnomer. Blood 60:213–219

    PubMed  CAS  Google Scholar 

  • Radley JM, Haller CJ (1983) Fate of senescent megakaryocytes in the bone marrow. Br J Haematol 53:277–287

    Article  PubMed  CAS  Google Scholar 

  • Radley JM, Hartshorn MA (1987) Megakaryocyte fragments and the microtubule coil. Blood Cells 12:603–610

    PubMed  CAS  Google Scholar 

  • Radley JM, Scurfield G (1980) The mechanism of platelet release. Blood 56:996–999

    PubMed  CAS  Google Scholar 

  • Radley JM, Hartshorn MA, Green SL (1987) The response of megakaryocytes with processes to thrombin. Thromb Haemostas 58:732–736

    CAS  Google Scholar 

  • Rand ML, Greenberg JP, Packham MA, Mustard JF (1981) Density subpopulations of rabbit platelets: size, protein, and sialic acid content, and specific radioactivity changes following labelling with 35S-sulphate in vivo. Blood 57:741–745

    PubMed  CAS  Google Scholar 

  • Rand ML, Packham MA, Mustard JF (1983) Survival of density subpopulations of rabbit platelets: use of 51Cr- or 111In-labelled platelets to measure survival of least dense and most dense platelets concurrently. Blood 61:362–367

    PubMed  CAS  Google Scholar 

  • Savage B, Mcfadden PR, Hanson SR, Harker LA (1986) The relation of platelet density to platelet age: survival of low- and high-density 111Indium-labelled platelets in baboons. Blood 68:386–393

    PubMed  CAS  Google Scholar 

  • Savage B, Hanson SR, Harker LA (1988) Selective decrease in platelet dense granule adenine nucleotides during recovery from acute experimental thrombocytopenia and ensuing thrombocytosis in baboons. Br J Haematol 68:75–82

    Article  PubMed  CAS  Google Scholar 

  • Scott RB, Still WJS (1970) Glycogen in human blood platelets. Isolation by ultracentrifugation and characteristics of the isolated particles. Blood 35:517–532

    PubMed  CAS  Google Scholar 

  • Scurfield G, Radley JM (1981) Aspects of platelet formation and release. Am J Hematol 10:285–296

    Article  PubMed  CAS  Google Scholar 

  • Sharp GA, Weber K, Osburn M (1982) Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol 29:97–103

    PubMed  CAS  Google Scholar 

  • Shaw T (1988) The role of blood platelets in nucleoside metabolism: regulation of megakaryocyte development and platelet production. Mutation Res 200:67–97

    Article  PubMed  CAS  Google Scholar 

  • Silverman RB (1983) Mechanism of inactivation of monamine oxidase by trans-2-phenylcyclopropyla- mine and the structure of the enzyme-inactivator adduct. J Biol Chem 258:14766–14769

    PubMed  CAS  Google Scholar 

  • Simpson GM, Frederickson E, Palmer R, Pi E, Sloane RB, White K (1985) Platelet monoamine oxidase inhibition by deprenyl and tranylcypromine: implications for clinical use. Biol Psychiatr 20:680–684

    Article  Google Scholar 

  • Slater DN, Trowbridge EA, Martin JF (1983) The megakaryocyte in thrombocytopenia: a microscopic study which supports the theory that platelets are produced in the pulmonary circulation. Thromb Res 31:163–176

    Article  PubMed  CAS  Google Scholar 

  • Soslau G, Giles J (1982) The loss of sialic acid and its prevention in stored human platelets. Thromb Res 26:443–455

    Article  PubMed  CAS  Google Scholar 

  • Steiner M, Vancura S (1985) Asymmetrical loss of sialic acid from membrane glycoproteins during platelet aging. Thromb Res 40:465–471

    Article  PubMed  CAS  Google Scholar 

  • Stenberg PE, Levin J (1989) Mechanisms of platelet production. Blood Cells 15:23–47

    PubMed  CAS  Google Scholar 

  • Straneva JE, Goheen MP, Hiu SL, Bruno E, Hoffman R (1986) Terminal cytoplasmic maturation of human megakaryocytes in vitro. Exp Hematol 14:919–929

    PubMed  CAS  Google Scholar 

  • Tavassoli M, Aoki M (1989) Localization of megakaryocytes in the bone marrow. Blood Cells 15:3–14

    PubMed  CAS  Google Scholar 

  • Thiery J-P, Bessis M (1956) Mecanisme de la plaquettogenese. Etude ‘in vitro’ par la microcinematographie. Rev Hematol 2:162–174

    Google Scholar 

  • Thompson CB (1985) Selective consumption of large platelets during massive bleeding. Br Med J 291:95–96

    Article  CAS  Google Scholar 

  • Thompson CB, Jakubowski JA (1988) The pathophysiology and clinical relevance of platelet heterogeneity. Blood 72:1–8

    PubMed  CAS  Google Scholar 

  • Thompson CB, Jakubowski JA, Quinn PG, Deykin D, Valeri CR (1983a) Platelet size as a determinant of platelet function. J Lab Clin Med 101:205–213

    PubMed  CAS  Google Scholar 

  • Thompson CB, Love DG, Quinn PG, Valeri CR (1983b) Platelet size does not correlate with platelet age. Blood 62:487–494

    PubMed  CAS  Google Scholar 

  • Thompson CB, Jakubowski JA, Quinn PG, Deykin D, Valeri CR (1984) Platelet size and age determine platelet function independently. Blood 63:1372–1375

    PubMed  CAS  Google Scholar 

  • Tong M, Seth P, Penington DG (1987) Proplatelets and stress platelets. Blood 69:522–528

    PubMed  CAS  Google Scholar 

  • Trowbridge EA (1987) Correspondence. Blood 70:600

    PubMed  CAS  Google Scholar 

  • Trowbridge EA (1988) Pulmonary platelet production: A physical analogue of mitosis. Blood Cells 13:451–458

    PubMed  CAS  Google Scholar 

  • Trowbridge EA, Martin JF (1983) A biological approach to the platelet survival curve with criticism of previous interpretations. Phys Med Biol 28:1349–1368

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge EA, Martin JF, Slater DN (1982) Evidence for a theory of physical fragmentation of megakaryocytes, implying that all platelets are produced in the pulmonary circulation. Thromb Res 28:461–475

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge EA, Warren CW, Martin JF (1986) Platelet volume heterogeneity in acute thrombocytopenia. Clin Phys Physiol Meas 7:203–210

    Article  PubMed  CAS  Google Scholar 

  • Van Oost BA, Van Hien-Hogg IH, Timmermans APM, Sixma JJ (1983) The effect of thrombin on the density distribution of blood platelets: detection of activated platelets in the circulation. Blood 62:433–438

    PubMed  Google Scholar 

  • Van Oost BA, Timmermans APM, Sixma JJ (1984) Evidence that platelet density depends on the α-granule content in platelets. Blood 63:482–485

    PubMed  Google Scholar 

  • Vicic WJ, Weiss HJ (1983) Evidence that α-granules are a major determinant of platelet density: studies in storage pool deficiency. Thromb Haemostas 50:878–880

    CAS  Google Scholar 

  • Watson HHK, Ludlam CA (1986) Survival of 111-indium platelet subpopulations of varying density in normal and post splenectomised subjects. Br J Haematol 62:117–124

    Article  PubMed  CAS  Google Scholar 

  • Weiss L (1965) The structure of bone marrow, functional interrelationships of vascular and hematopoietic compartments in experimental hemolytic anemia. J Morphol 117:467–538

    Article  PubMed  CAS  Google Scholar 

  • White JG (1989) Commentary. Blood Cells 15:48–58

    PubMed  CAS  Google Scholar 

  • Williams N, Jackson H, Sheridan APC, Murphy MJ, Elste A, Moore MAS (1978) Regulation of megakaryocytosis in long-term murine bone marrow cultures. Blood 51:245–255

    PubMed  CAS  Google Scholar 

  • Wright JH (1906) The origin and nature of the blood plates. Boston Med Surg J 154:643–645

    Article  Google Scholar 

  • Wright JH (1910) The histogenesis of blood platelets. J Morphol 21:263–278

    Article  Google Scholar 

  • Yamada E (1957) The fine structure of the megakaryocyte in the mouse spleen. Acta Anat 29:267–290

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki H, Motomiya T, Watanabe C, Miyagawa N, Yahara Y, Okawa Y, Onozawa Y (1980) Consumption of larger platelets with decrease in adenine nucleotide content in thrombosis, disseminated intravascular coagulation, and postoperative state. Thromb Res 18:77–88

    Article  PubMed  CAS  Google Scholar 

  • Zucker MB, Borrelli J (1954) Reversible alterations in platelet morphology produced by anticoagulants and by cold. Blood 9:602–608

    PubMed  CAS  Google Scholar 

  • Zucker-Franklin D, Petursson S (1984) Thrombocytopoiesis: Analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol 99:390–402

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chamberlain, K.G., Tong, M., Penington, D.G. (1990). Platelet Formation, Platelet Density and Platelet Ageing. In: Martin, J., Trowbridge, A. (eds) Platelet Heterogeneity. Springer, London. https://doi.org/10.1007/978-1-4471-1763-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1763-6_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1765-0

  • Online ISBN: 978-1-4471-1763-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics