Skip to main content

Geometry of Alternating Links

  • Chapter
An Introduction to Knot Theory

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 175))

Abstract

An alternating diagram for a link is, as explained in Chapter 1, one in which the over or under nature of the crossings alternates along every link-component in the diagram; the crossings always go “… over, under, over, under,…” when considered from any starting point. A link is said to be alternating if it possesses such a diagram. It has long been realised that alternating diagrams for a knot or link are particularly agreeable. However, the question posed by R. H. Fox—“What is an alternating knot?”—by which he was asking for some topological characterisation of alternating knots without mention of diagrams, is still unanswered. In later chapters the way in which the alternating property interacts with polynomial invariants will be discussed. In what follows here, some of the geometric properties of alternating links, discovered by W. Menasco [94], will be considered. The results are paraphrased by saying that an alternating link is split if and only if it is obviously split and prime if and only if it is obviously prime. Here “obviously” means that the property can at once be observed in the alternating diagram. This then establishes a ready supply of prime knots. Much of the ensuing discussion will concern 2-spheres embedded in S 3. It is to be assumed, as usual, that all such embeddings are piecewise linear (that is, simplicial with respect to some subdivisions of the basic triangulations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lickorish, W.B.R. (1997). Geometry of Alternating Links. In: An Introduction to Knot Theory. Graduate Texts in Mathematics, vol 175. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0691-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0691-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6869-7

  • Online ISBN: 978-1-4612-0691-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics