Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 26))

  • 158 Accesses

Abstract

The discovery that plasma membrane phosphoinositides mediate cellular responses to external signals has led to tremendous interest in the structure and metabolism of phosphoinositides and inositol phosphates. The role of inositol1,4,5-trisphosphate [Ins(1,4,5)P3] as a mediator of receptor-initiated changes in intracellular calcium is well characterized (Berridge, 1993; Berridge and Irvine, 1989). The role of Ins(1,3,4,5)P4 (the abbreviations used are defined in Section 2) in regulating cellular calcium entry at the plasma membrane (Berridge, 1993; Berridge and Irvine, 1989) is evolving rapidly. Neurotransmitter functions for Ins(1,3,4,5,6)P5 and InsP6 (Vallejo et al., 1988) have been proposed. The ability of Ins(1,3,4,5,6,)P5 to modulate the affinity of hemoglobin for oxygen is widely accepted (Isaacks and Harkness, 1980). The possibility that other inositol phosphates found in cells may perform cellular functions has heightened interest in the structure and metabolism of inositol phosphates (Menniti et al., 1993b). In vivo, inositol phosphates are interrelated by a complex web of reactions (Majerus et al., 1988), and a rapid dynamic equilibrium exists among the different inositol phosphates. A number of recent reviews (Drøbak, 1992, 1993; Coté and Crain, 1993; Hetherington and Drøbak, 1992; Rincon and Boss, 1990) and other chapters in this book contain information on the structure and metabolism of phosphoinositides in plant cells. This review describes the pathways and enzymes involved in the metabolism of inositol phosphates in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackermann, K. E., Gish, M. P., Honchar, M. P., and Sherman, W. R., 1987, Evidence that inositol-1-phosphate in brain of lithium-treated rats results mainly from phosphatidylinositol metabolism, Biochem. J. 242:517–524.

    PubMed  CAS  Google Scholar 

  • Adams, S. R., Kao, J.P.Y., Grynkiewicz, G., Minta, A., and Tsien, R. Y., 1988, Biologically useful chelators that release Ca+2 upon illumination, J. Am. Chem. Soc. 110:3212–3220.

    Article  CAS  Google Scholar 

  • Agranoff, B. W., 1978, Cyclitol confusion, Trends Biochem. Sci. 3:N283–N285.

    Article  CAS  Google Scholar 

  • Asada, K., Tanaka, K., and Kasai, Z., 1969, Formation of phytic acid in cereal grains, Ann. N.Y. Acad. Sci. 165:801–814.

    PubMed  CAS  Google Scholar 

  • Baldi, B. G., Scott, J. J., Everard, J. D., and Loewus, F. A., 1988, Localization of constitutive phytases in lily pollen and properties of the pH 8 form, Plant Sci. 56:137–147.

    Article  CAS  Google Scholar 

  • Barrientes, L., Scott, J. J., and Murthy, P.P.N., 1994, Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen, Plant Physiol. 106:1489–1495.

    Article  Google Scholar 

  • Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1989, Inositol trisphosphate and diaclyglycerol: Two interactive second messengers, Nature 341:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Billington, D. C., 1993, The Inositol Phosphates, Chemical Synthesis and Biological Significance, VCH Publishers, New York, pp. 87–138.

    Google Scholar 

  • Biswas, S., Maity, I. B., Chakrabarti, S., and Biswas, B. B., Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaeolus aureus, Arch. Biochem. Biophys. 185:557–566.

    Google Scholar 

  • Bollman, O., Strother, S., and Hoffman-Ostenhof, O., 1980, The enzymes involved in the synthesis of phytic acid in Lemna gibba (studies on the biosynthesis of cyclitols, XL), Mol. Cell. Biochem. 30:171–175.

    Article  Google Scholar 

  • Chakrabarti, S., and Biswas, B. B., 1981, Two forms of phosphoinositol kinase from germinating mung bean seeds, Phytochemistry 20:1815–1817.

    Article  CAS  Google Scholar 

  • Cooke, A. M., Nahorski, S. R., and Potter, B.V.L., 1989a, Myo-inositol 1,4,5-trisphosphorothioate is a potent competitive inhibitor of human erythrocyte 5-phosphatase, FEBS Lett. 242:373–377.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, A. M., Noble, N. J., Gigg, R., Willcoks, A. L., Strupish, J., Nahorski, S. R., and Potter, B.V.L., 1989b, Synthesis of myo-inositol 1,4-bisphosphate-5-phosphorothioate, Biochem. Soc. Trans. 16:992.

    Google Scholar 

  • Cosgrove, D. J., 1980a, Inositol Phosphates, Their Chemistry, Biochemistry and Physiology, Elsevier, Amsterdam.

    Google Scholar 

  • Cosgrove, D. J., 1980b, Phytase, in Inositol Phosphates, Their Chemistry, Biochemistry, and Physiology, pp. 85–98, Elsevier, Amsterdam.

    Google Scholar 

  • Cosgrove, D. J., 1980c, Intermediates in the dephosphorylation of P6-inositols by phytase enzymes, in Inositol Phosphates, Their Chemistry, Biochemistry, and Physiology, pp. 99–105, Elsevier, Amsterdam.

    Google Scholar 

  • Costello, A.J.R., Glonek, T., and Myers, T. C., 1976, 31P nuclear magnetic resonance—pH titrations of myo-inositol hexaphosphate, Carbohydrate Res. 46:159–171.

    Article  CAS  Google Scholar 

  • Coté, G. G., and Crain, R. C., 1993, Biochemistry of phosphoinositides, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:333–356.

    Article  Google Scholar 

  • Dean-Johnson, M., and Henry, S. A., 1989, Biosynthesis of inositol in yeast: Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus, J. Biol. Chem. 264:1274–1283.

    PubMed  CAS  Google Scholar 

  • Dreef, C. E., Mayr, G. W., Jansze, J.-P., Roelen, H.C.P.F., Van der Marel, G. A., and van Boom, J. H., 1991a, An expeditious synthesis of biologically important myo-inositol phosphorothioates, Bioorg. Med. Chem. Lett. 1:239–242.

    Article  CAS  Google Scholar 

  • Dreef, C. E., Schiebier, W., van der Marel, G. A., and van Boom J., 1991b, Synthesis of 5-Phosphorate analogs of myo-inositol 1,4,5-trisphosphate: Possible intracellular calcium antagonists. Tetrahedron Lett. 32:6021–6024.

    Article  CAS  Google Scholar 

  • Drøbak, B. K., 1992, The plant phosphoinositide system, Biochem. J. 288:697–712.

    PubMed  Google Scholar 

  • Drøbak, B. K., 1993, Plant phosphoinositides and intracellular signaling, Plant Physiol. 102:705–709.

    PubMed  Google Scholar 

  • Drøbak, B. K., Watkins, P.A.C., Chattaway, J. A., Roberts, K., and Dawson, A. P., 1991, Metabolism of inositol(1,4,5)trisphosphate by a soluble enzyme fraction from pea (Pisum sativum) roots, Plant Physiol. 95:412–419.

    Article  PubMed  Google Scholar 

  • Emsley, J., and Niazi, S., 1981, The structure of myo- inositol hexaphosphate in solution: 31P.N.M.R. investigation, Phosphorus Sulfur 10:401–408.

    Article  CAS  Google Scholar 

  • Gibson, D. M., and Ullah, A.B.J., 1990, Phytases and their action on phytic acid, in Inositol Metabolism in Plants, (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 77–92, Wiley-Liss, New York.

    Google Scholar 

  • Gilroy, S., Read, N. D., and Trewavas, A. J., 1990, Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure, Nature 346:769–771.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, J. S., and Bewley, J. D., 1984, Subcellular distribution of phytin in the endosperm of developing castor bean: A possibility for its synthesis in the cytoplasm prior to deposition within protein bodies, Planta 160:113–120.

    Article  CAS  Google Scholar 

  • Gurney, A. M., and Lester, H. A., 1987, Light-flash physiology with synthetic photosensitive compounds, Physiol. Rev. 67:583–617.

    PubMed  CAS  Google Scholar 

  • Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.

    PubMed  CAS  Google Scholar 

  • Henne, V., Mayr, G. W., Grawowski, B., Koppitz, B., and Soeling, H.-D., 1988, Semisynthetic derivatives of inositol 1,4,5-trisphosphate substituted at the 1-phosphate group. Effect on calcium release from permeabilized guinea pig parotid acinar cells and comparison with binding to aldolase A, Eur. J. Biochem. 194:95–101.

    Article  Google Scholar 

  • Hetherington, A. M., and Drøbak, B. K., 1992, Inositol-containing lipids in higher plants, Prog. Lipid Res. 31:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Ostenhof, O., and Pittner, F., 1982, Biosynthesis of myo-inositol and its isomers, Can. J. Chem. 60:1863–1871.

    Article  CAS  Google Scholar 

  • Huang, C.-H., Yan, A.K.F., Crain, R. C., and Coté, G. C., 1994, Phosphoinositide specific phospholipase C in oat roots, Plant Physiol. 105:105.

    Google Scholar 

  • Igaue, I., Shimizu, M., and Miyauchi, S., 1980, Formation of a series of myo-inositol phosphates during growth of rice plant cells in suspension culture, Plant Cell Physiol. 21:351–356.

    CAS  Google Scholar 

  • Igaue, I., Miyauchi, S., and Saito, K., 1982, Formation of myo-inositol phosphates in a rice cell suspension culture, in Proceedings of the 5th International Congress of Plant Tissue and Cell Culture, (A. Fujwara, ed.) pp. 265–266, Mauruzen, Tokyo.

    Google Scholar 

  • Irvine, R. F., Letcher, A. J., and Rawson, R.M.C., 1980, Phosphatidylinositol phosphodiesterase in higher plants, Biochem. J. 192:279–283.

    PubMed  CAS  Google Scholar 

  • Isaacks, R. E., and Harkness, D. R., 1980, Erythrocyte organic phosphates and hemoglobin function in birds, reptiles and fishes, Am. Zool. 20:115–129.

    CAS  Google Scholar 

  • IUB Nomenclature Committee, 1989, Numbering of atoms in myo-inositol, Biochem. J. 258:1–2.

    Google Scholar 

  • IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB Commission on Biochemical Nomenclature, 1976, Nomenclature of cyclitols, Biochem. J. 153:23–31.

    Google Scholar 

  • IUPAC-IUB Enzyme Nomenclature Recommendation, 1975, Supplement 1: Corrections and additions, Biochim. Biophys. Acta 429:1–2.

    Google Scholar 

  • Joseph, S. K., Esch, T., and Bonner, W. D., Jr., 1989, Hydrolysis of inositol phosphates by plant cell extracts, Biochem. J. 264:851–856.

    PubMed  CAS  Google Scholar 

  • Lampe, D., and Potter, B.V.L., 1990, Synthesis of myo-inositol-1-phosphorothioate 4,5-bisphosphate: Preparation of a fluorescently labeled myo-inositol 1,4,5-trisphosphate analog, J. Chem. Soc. Chem. Commun. 1500–1501.

    Google Scholar 

  • Lim, P. E., and Tate, M. E., 1973, The Phytases II. Properties of phytase fraction F1 and F2 from wheat bran and myo-inositol phosphates produced by fraction F2, Biochim. Biophys. Acta 302:316–328.

    PubMed  CAS  Google Scholar 

  • Lin, J.-J., Dickinson, D. B., and Ho, T.-H. D., 1987, Phytic acid metabolism in lily (Lilium longiflorum Thumb.) pollen, Plant Physiol. 83:408–413.

    Article  PubMed  CAS  Google Scholar 

  • Loewus, F. A., 1990a, Inositol biosynthesis, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), Wiley-Liss, New York, pp. 13–19.

    Google Scholar 

  • Loewus, F. A., 1990b, Structure and occurrence of inositol in plants, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), Wiley-Liss, New York, pp. 1–11.

    Google Scholar 

  • Loewus, F., and Dickinson, D. B., 1982, Cyclitols, in Encyclopedia of Plant Physiology: Vol. 13A, Plant Carbohydrates I: Intracellular Carbohydrates (F. A. Loewus, and W. Tanner, eds.), pp. 193–206, Springer-Verlag, Berlin.

    Google Scholar 

  • Loewus, F. A., and Kelly, S., 1962, Conversion of glucose to inositol in parsley leaves, Biochem. Biophys. Res. Commun. 7:204–208.

    Article  PubMed  CAS  Google Scholar 

  • Loewus, F. A., and Loewus, M. W., 1983, myo-Inositol: Its biosynthesis and metabolism, Annu. Rev. Plant Physiol. 34:137–161.

    Article  CAS  Google Scholar 

  • Loewus, F. A., Everard, J. D., and Young, K. A., 1990, Inositol metabolism: Precursor role and breakdown, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 21–45, Wiley-Liss, New York.

    Google Scholar 

  • Loewus, M. W., and Loewus, F. A., 1982, myo-Inositol-1-phosphatase from the pollen of Lilium longiflorum Thumb., Plant Physiol. 70: 765–770.

    Article  PubMed  CAS  Google Scholar 

  • Maga, J. A., 1982, Phytate: Its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis, J. Agric. Food Chem. 30:1–9.

    Article  CAS  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Bansal, V S., Inhorn, R. C., Ross, T. S., and Lips, D. L., 1988, Inositol phosphates: Synthesis and degradation, J. Biol. Chem. 263:3051–3054.

    PubMed  CAS  Google Scholar 

  • Majumdar, A.N.L., and Biswas, B. B., 1973, Further characterization of phosphoinositol kinase isolated from germinating mung bean seeds, Phytochemistry 12:315–319.

    Article  Google Scholar 

  • Majumdar, A.N.L., Mandai, N. C., and Biswas, B. B., 1972, Phosphoinositol kinase from germinating mung bean seeds, Phytochemistry 11:503–508.

    Article  Google Scholar 

  • Martinoia, E., Locher, R., and Vogt, E., 1993, Inositol trisphosphate metabolism in subcellular fractions of barley (Hordeum vulgare L.) mesophyll cells, Plant Physiol. 102:101–105.

    PubMed  CAS  Google Scholar 

  • Mayr, G. W., Radenberg, T., Theil, U., Vogel, G., and Stephens, L. R., 1992, Phosphoinositol disphosphates: Non-enzymic formation in vitro and occurrence in vivo in the cellular slime mold Dictyostelium, Carbohydrate Res. 234:247–262.

    Article  CAS  Google Scholar 

  • Melin, P. M., Pical, C., Tergil, B., and Sommarin, M., 1992, Phosphoinositide phospholipase C in wheat root plasma membranes. partial purification and characterization, Biochim. Biophys. Acta 1123:163–169.

    PubMed  CAS  Google Scholar 

  • Memon, A. R., Rincon, M., and Boss, W. F., 1989, Inositol trisphosphate metabolism in carrot (Daucus carota L.) cells, Plant Physiol. 91:477–480.

    Article  PubMed  CAS  Google Scholar 

  • Menniti, F. S., Miller, R. N., Putney, J. W., Jr., and Shears, S. B., 1993a, Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells, J. Biol. Chem. 268:3850–3856.

    PubMed  CAS  Google Scholar 

  • Menniti, F. S., Oliver, K. G., Putney, J. W., Jr., and Shears, S. B., 1993b, Inositol phosphates and cell signaling: New views of InsP5 and InsP6, Trends Biochem. Sci. 18:53–56.

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy, R., and Eisenberg, F., Jr., 1986, The inositol phospholipids: A stereochemical view of biological activity, Biochem. J. 235:313–322.

    PubMed  CAS  Google Scholar 

  • Parthasarathy, R., and Eisenberg, F., Jr., 1990, Biochemistry, stereochemistry, and nomenclature of the inositol phosphates, in Inositol Phosphates and Derivatives: Synthesis, Biochemistry, and Therapeutic Potential (A. B. Reitz, ed.), pp. 1–19, ACS Symposium Series 463, American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Pasternak, T., 1965, The Cyclitols, pp. 341–351, Holden-Day, San Francisco.

    Google Scholar 

  • Pen, J., Verwoerd, T. C., van Paridon, P. A., Beudeker, R. F., van den Elzen, P.J.M., Geerse, K. van der Klis, J. D., Versteegh, H.A.J., van Ooyen, A.J.J., and Hoekema, A., 1993, Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization, Bio/Technology 11:811–814.

    Article  CAS  Google Scholar 

  • Prestwich, G. D., Marecek, J., Mourey, R. J., Theibert, A. B., Ferris, C. D., Danoff, S. K., and Snyder, S. H., 1991, Tethered IP3, synthesis and biochemical application of the 1-D-(3-aminopropyl)ester of inositol (1,4,5)trisphosphate, J. Am. Chem. Soc. 113:1822.

    Article  CAS  Google Scholar 

  • Raboy, V., 1990, Biochemistry and genetics of phytic acid synthesis, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 55–76, Wiley-Liss, New York.

    Google Scholar 

  • Reitz, A. B., 1991, Inositol Phosphates and Derivatives, ACS Symposium Series 463. American Chemical Society, Washington, DC.

    Book  Google Scholar 

  • Rincon, M., and Boss, W. F., 1990, Second messenger role of phosphoinositides, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 173–200, Wiley-Liss, ew York.

    Google Scholar 

  • Roberts, R. M., and Loewus, F., 1968, Inositol metabolism in plants. VI. Conversion of myo-inositol to phytic acid in Wolffiella floridana, Plant Physiol. 43:1710–1716.

    Article  PubMed  CAS  Google Scholar 

  • Safrany, S. T., Wojcikiewicz, R.J.H., Strupish, J., McBain, J., Cooke, A., Potter, B.V.L., and Nahorski, S. R., 1991, Synthetic phosphorothioate-containing analogs of inositol 1,4,5-trisphosphate mobilize intracellular calcium stores and interact differentially with inositol 1,4,5-trisphosphate 5-phosphatase and 3-kinase, Mol. Pharmacol. 39:754–761.

    PubMed  CAS  Google Scholar 

  • Schäfer, R., Nehls-Sahabandu, M., Grabowski, B., Dehlinger-Kremer, M., and Mayr, G. W., 1990, Synthesis and application of photoaffinity analogues of inositol 1,4,5-trisphosphate selectively substituted at the 1-phosphate group, Biochem. J. 272:817–825.

    PubMed  Google Scholar 

  • Schumaker, K. S., and Sze, H., 1987, Inositol 1,4,5-trisphosphate releases Ca++ from vacuolar membrane vesicles of oat roots, J. Biol. Chem. 262:3944–3946.

    PubMed  CAS  Google Scholar 

  • Scott, J. J., 1991, Alkaline phytase activity in nonionic detergent extracts of legume seeds, Plant Physiol. 95:1298–1301.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. J., and Loewus, F. A., 1986, Phytate metabolism in plants, in Phytic Acid: Chemistry and Applications (E. Graf, ed.), pp. 23–42, Pilatus Press, Minneapolis.

    Google Scholar 

  • Stephens, L. R., and Irvine, R. F., 1990, Stepwise phosphorylation of myo=inositol leading to myo-inositol hexakisphosphate in Dictyostelium, Nature 346:580–583.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, L. R., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T. R., Hawkins, P. T., and Mayr, G. W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetra-kisphosphate(s), J. Biol. Chem. 268:4009–4015.

    PubMed  CAS  Google Scholar 

  • Tarczynski, M. C., Jensen, R. G., and Bohnert, H. J., 1993, Stress protection of transgenic tobacco by production of the osmolyte mannitol, Science 259:508–510.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. W., Berridge, M. J., Cooke, A. M., and Potter, B.V.L., 1988, DL-myo-Inositol 1,4,5-trisphosphorothioate mobilizes intracellular calcium in Swiss 3T3 cells and Xenopus oocytes, Biochem. Biophys. Res. Commun. 150:626–632.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. W., Berridge, M. J., Cooke, A. M., and Potter, B.V.L., 1989, Inositol 1,4,5-trisphosphorothioate, a stable analog of inositol trisphosphate which mobilizes intracellular calcium, Biochem. J. 259:645–650.

    PubMed  CAS  Google Scholar 

  • Tomlinson, R. V., and Ballou, C. E., 1962, myo-inositol polyphosphate intermediates in the de-phosphorylation of phytic acid by phytase, Biochemistry 1:166–171.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. Y., and Zucker, R. S., 1986, Control of cytoplasmic calcium with photolabile tetracar-oxylate 2-nitrobenzhydrol chelators, Biophys. J. 50:843–853.

    Article  PubMed  CAS  Google Scholar 

  • Vallejo, M., Jackson, T., Lightman, S., and Hanley, M. R., 1988, Occurrence and extracellular actions of inositol pentakis and hexakis-phosphate in mammalian brain, Nature 330:656–658.

    Article  Google Scholar 

  • van Hartingsveldt, W., van Zeijl, C.M.J., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M.E.G., Luiten, R.G.M., van Paridon, P. A., Selten, G.C.M., Veenstra, A. E., van Gorcom, R.F.M., and van den Hondel, C.A.M.J.J., 1993, Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger, Gene 127:87–94.

    Article  PubMed  Google Scholar 

  • Vernon, D. M., Tarczynski, M. C., Jensen, R. G., and Bohnert, H. J., 1993, Cyclitol production in transgenic tobacco, Plant J. 4:199–205.

    Article  CAS  Google Scholar 

  • Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P., and Trentham, D. R., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate, Nature 327:249–252.

    Article  PubMed  CAS  Google Scholar 

  • Willcocks, A. L., Potter, B.V.L., Cooke, A. M., and Nahorski, S. R., 1988, Myo-inositol (1,4,5) trisphosphorothiorate binds to specific [3H]inositol (1,4,5) trisphosphate sites in rat cerebellum and is resistant to 5-phosphatase, Eur. J. Pharmacol. 155:181–183.

    Article  PubMed  CAS  Google Scholar 

  • Wojckiewicz, R.J.H., Cooke, A. M., Potter, B.V.L., and Nahorski, S. R., 1990, Inhibition of inositol 1,4,5-trisphosphate metabolism in permeabilized SH-5Y5Y human neuroblastoma cells by a phosphorothioate-containing analog of inositol 1,4,5-trisphosphate, Eur. J. Biochem. 192:459–467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Murthy, P.P.N. (1996). Inositol Phosphates and Their Metabolism in Plants. In: Biswas, B.B., Biswas, S. (eds) myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Subcellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0343-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0343-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8007-8

  • Online ISBN: 978-1-4613-0343-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics