Skip to main content

Electrophysiology of Vascular Smooth Muscle

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

  • 332 Accesses

  • 11 Citations

Abstract

This chapter provides an overview of the electrophysiology of vascular smooth muscle and of how the actions of some vasoactive substances are mediated by changes in electrical properties of the cell membrane. Emphasis is given to the role of the Ca2+ ion and to the action of inhibitor drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Somlyo AP, Somlyo AV: Vascular smooth muscle. I. Normal structure, pathology, biochemistry and biophysics. Pharmacol Rev 20: 197–272, 1968.

    PubMed  CAS  Google Scholar 

  2. Mekata F: Electrophysiological properties of the smooth muscle cell membrane of the dog coronary artery. J Physiol 298: 205–212, 1980.

    PubMed  CAS  Google Scholar 

  3. Droogmans G, Raeymaekers L, Casteels R: Electro- and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J Gen Physiol 70: 129–148, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Kuriyama H, Ito Y, Suzuki H, Kitamura K, Itoh T: Factors modifying contraction-relaxation cycle in vascular smooth muscle. Am J Physiol 243: H641– 662, 1982.

    Google Scholar 

  5. Somlyo AV, Somlyo AP: Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther 159: 129–145, 1968.

    PubMed  CAS  Google Scholar 

  6. Somlyo AV, Vinall P, Somlyo AP: Excitation- contraction coupling and electrical events in two types of vascular smooth muscle. Microvasc Res 1: 354–373, 1969.

    Article  PubMed  CAS  Google Scholar 

  7. Johansson B: Electromechanical and mechanoelectrical coupling in vascular smooth muscle. Angiologia 8: 129–143, 1971.

    CAS  Google Scholar 

  8. Johansson B: Processes involved in vascular smooth muscle contraction and relaxation. Circ Res 43: 14–20, 1978.

    CAS  Google Scholar 

  9. Zelcer E, Sperelakis N: Ionic dependence of electrical activity in small mesenteric arteries of guinea-pig. Pflugers Arch 392: 72–78, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Harder DR, Sperelakis N: Action potentials induced in guinea pig arterial smooth muscle by tetraethy- lammonium. Am J Physiol 237: C75–86, 1979.

    PubMed  CAS  Google Scholar 

  11. Horn L: Electrophysiology of vascular smooth muscle. In: Kaley G, Altura B (eds) Microcirculation, Vol 2. Baltimore: University Park Press, 1978 pg 119–157.

    Google Scholar 

  12. Bolton TB: Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59: 606–718, 1979.

    PubMed  CAS  Google Scholar 

  13. Johansson B, Somlyo AP: Electrophysiology and excitation-contraction coupling. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of Physiology. Sect 2: The Cardiovascular System. Vol 2: Vascular Smooth Muscle. Bethesda: American Physiological Society, 1980, pp 301–323.

    Google Scholar 

  14. Fabiato A, Fabiato F: Calcium and cardiac excitation-contraction coupling. Ann Rev Physiol 41: 473–484, 1979.

    Article  CAS  Google Scholar 

  15. Itoh T, Kuriyama H, Suzuki H: Excitation- contraction coupling in smooth muscle cell of the guinea-pig mesenteric artery. J Physiol (Lond) 321: 513–551, 1981.

    CAS  Google Scholar 

  16. Williams DA, Fogarty KE, Tsien RW, Fay FS: Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318: 558–561, 1986.

    Article  Google Scholar 

  17. Casteels R: Electro- and pharmacomechanical coupling in vascular smooth muscle. Chest (Suppl) 78: 150–156, 1980.

    CAS  Google Scholar 

  18. Van Breemen C, Aaronson T, Loutzenhifer R: Sodium-calcium interactions in mammalian smooth muscle. Pharmacol Rev 30: 167–208, 1979.

    Google Scholar 

  19. Berridge MJ: Inositol triphosphate and diacylgly- cerol as second messengers. Biochem J 220: 345–360, 1984.

    PubMed  CAS  Google Scholar 

  20. Suematsu E, Hirata M, Hashimoto T, Kuriyama H: Inositol 1,4’,5-triphosphate releases Ca2+ from intracellular store sites in skinned cells of porcine coronary artery. Biochem Biophys Res Commun 120: 481–485, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Somlyo AV, Bond M, Somlyo AP, Scapra A: Inositol triphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci USA 82: 5231–5235, 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Smith JB, Smith L, Brown EP, Barnes D, Sabir MA, Davis JS, Farese RO: Angiotensin II rapidly increases phosphatidase-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells. Proc Natl Acad USA 81: 7812 - 7816, 1984.

    Article  CAS  Google Scholar 

  23. Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–698, 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Itoh T, Kanmura Y, Kuriyama H, Sumimoto K: A phorbol ester has dual actions on the mechanical response in the rabbit mesenteric and porcine coronary artery. J Physiol (Lond) 375: 515 - 534, 1986.

    CAS  Google Scholar 

  25. Jones AW: Content and fluxes of electrolytes. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of Physiology. Sect 2: The Cardiovascular System. Vol 2: Vascular Smooth Muscle. Bethesda: American Physiological Society, 1980, pp 253–299

    Google Scholar 

  26. Harder D, Sperelakis N: Membrane electrical properties of vascular smooth muscle from guinea pig superior mesenteric artery. Pfliigers Arch 378: 1. 11–119, 1978.

    Google Scholar 

  27. Harder D, Belardinelli L, Sperelakis N, Rubio R, Berne RM: Differential effects of adenosine and nitroglycerin on the action potentials of large and small coronary arteries. Circ Res 44; 176 - 182, 1979.

    PubMed  CAS  Google Scholar 

  28. Belardinelli L, Harder D, Sperelakis N, Rubio R, Berne RM: Cardiac glycoside stimulation of inward Ca++ current in vascular smooth muscle of canine coronary artery. J Pharmacol Exp Ther 209: 62–66, 1979.

    PubMed  CAS  Google Scholar 

  29. Sperelakis N: Origin of the cardiac resting potential. In Berne RM, Sperelakis N (eds) Handbook of Physiology. Sect 2: The Cardiovascular System. Vol 1: The Heart. Bethesda: American Physiological Society, 1979, pp 187–267.

    Google Scholar 

  30. Sperelakis N, Schneider MF, Harris EJ: Decreased K+ conductance produced by Ba+ + in frog sartorius fibers. J Gerj Physiol 50: 1565 - 1583, 1967.

    Article  CAS  Google Scholar 

  31. Sperelakis N, Lehmkuhl D: Effect of current on transmembrane potential in cultured chick heart cells. J Gen Physiol 47: 895–927, 1964.

    Article  PubMed  CAS  Google Scholar 

  32. Sperelakis N: Propagation mechanisms in heart. Ann Rev Physiol 41: 441–457, 1979

    Article  CAS  Google Scholar 

  33. Abe Y, Tomita T: Cable properties of smooth muscle. J Physiol (Lond) 196: 87 - 100, 1968.

    CAS  Google Scholar 

  34. Harder DR: Membrane electrical effects of histamine on vascular smooth muscle of canine coronary artery. Circ Res 46: 372 - 377, 1980.

    PubMed  CAS  Google Scholar 

  35. Bonaccorsi A, Hermsmeyer K, Aprigliano O, Smith CP, Bohr DF: Mechanism of potassium relaxation of arterial muscle. Blood Vessels 14: 261–276, 1977.

    PubMed  CAS  Google Scholar 

  36. Haddy FJ: The mechanism of potassium vasodilation. In: Vanhoutte PM, Leusen I (eds) Mechanisms of Vasodilation. Basel: Karger, 1978, pp 200–205.

    Google Scholar 

  37. Webb RC, Bohr DF: Potassium-induced relaxation as an indicator of Na+-K+ ATPase activity in vascular smooth muscle. Blood Vessels 15: 198–207, 1978.

    PubMed  CAS  Google Scholar 

  38. Webb RC, Bohr DF: Potassium relaxation of vascular smooth muscle from spontaneously hypertensive rats. Blood Vessels 16: 71–79, 1979.

    PubMed  CAS  Google Scholar 

  39. Casteels R, Kitamura K, Kuriyama H, Suzuki H: The membrane properties of the smooth muscle cells of rabbit pulmonary artery. J Physiol 271: 41–61, 1977.

    PubMed  CAS  Google Scholar 

  40. Haeusler G: Relationship between noradrenaline- induced depolarization and contraction in vascular smooth muscle. Blood Vessels 15: 46–54, 1978.

    PubMed  CAS  Google Scholar 

  41. Ito Y, Suzuki H, Kuriyama H: Effects of sodium nitroprusside on smooth muscle cells of rabbit pulmonary artery and portal vein. J Pharmacol Exp Ther 207: 1022–1031, 1978.

    PubMed  CAS  Google Scholar 

  42. Mekata F, Niu H: Biophysical effects of adrenaline on the smooth muscle of the rabbit common carotid artery. J Gen Physiol 59: 92–102, 1972.

    Article  PubMed  CAS  Google Scholar 

  43. Kuriyama H, Suzuki H: Electrical property and chemical sensitivity of vascular smooth muscles in normotensive and spontaneously hypertensive rats. J

    Google Scholar 

  44. Zelcer E, Sperelakis N: Spontaneous electrical activity in pressurized small mesenteric hypertensive rats. Blood Vessels 19: 301–310, 1982.

    PubMed  CAS  Google Scholar 

  45. Mekata F: Electrophysiological studies of the smooth muscle cell membrane of rabbit common cartotid artery. J Gen Physiol 57: 738–751, 1971.

    Article  PubMed  CAS  Google Scholar 

  46. Holman ME, Surprenant AM: Some properties of the excitatory junction potentials recorded from saphenous arteries of rabbits. J Physiol 287: 337–351, 1979.

    PubMed  CAS  Google Scholar 

  47. Harder DR: Membrane electrical activation of arterial smooth muscle. In Crass C, Barnes CD (eds) Research Topics in Physiology: Vascular Smooth Muscle. New York: Academic Press, 1981, pp 71–97.

    Google Scholar 

  48. Harder DR, Sperelakis N: Action potential generation in reaggregates of rat aortic smooth muscle cells in primary culture. Blood Vessels 16: 186–201, 1979.

    PubMed  CAS  Google Scholar 

  49. Harder DR, Sperelakis N: Bepridil blockade of Ca++-dependent action potentials in vascular smooth muscle of dog coronary artery. J Cardiovasc Pharmacol 3: 906–914, 1981.

    Article  PubMed  CAS  Google Scholar 

  50. Mras S, Sperelakis N: Bepridil (CERM-1978) blockade of action potentials in cultured rat aortic smooth cells. Eur J Pharmacol 71: 13–19, 1981.

    Article  PubMed  CAS  Google Scholar 

  51. Sperelakis N, Mras S: Depression of contractions of rabbit aorta and guinea pig vena cava by mesudipine and slow channel blockers. Blood Vessels 20: 172- 183, 1983.

    Google Scholar 

  52. Biamino E, Kruckenberg P: Synchronization and conduction of excitation in the rat aorta. Am J Physiol 217: 276–282, 1969.

    Google Scholar 

  53. Biilbring E, Tomita T: Catecholamine action on smooth muscle. Pharmacol Rev 39: 49 - 96, 1987.

    Google Scholar 

  54. Bolton TB, Lang RJ, Takewaki T: Mechanism of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol 351: 549–572, 1984.

    PubMed  CAS  Google Scholar 

  55. Itoh T, Kuriyama H, Suzuki H: Differences and similarities in the noradrenaline- and caffeine- induced mechanical responses in the rabbit mesenteric artery. J Physiol 337: 609–629, 1983.

    PubMed  CAS  Google Scholar 

  56. Takata Y: Regional differences in electrical mechanical properties of guinea-pig mesenteric vessels. Jpn J Physiol 30: 709 - 728, 1980.

    Article  PubMed  CAS  Google Scholar 

  57. Kuriyama H, Makita Y: Modulation of noradrenergic transmission in the guinea-pig mesenteric artery: An electrophysiological study. J Physiol 335: 609–627, 1983.

    PubMed  CAS  Google Scholar 

  58. Mulvany MJ, Nilsson H, Flatman J A: ¿ole of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol 332: 363–373, 1982.

    CAS  Google Scholar 

  59. Kuriyama H, Suzuki H: The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol 64: 493–501, 1978.

    PubMed  CAS  Google Scholar 

  60. Furchgott RF, Zawadzki JV: The obligatory role of the endothelial cells in the relaxation of arterial vascular smooth muscle by acetylcholine. Nature 288: 373–376, 1980.

    Article  PubMed  CAS  Google Scholar 

  61. Furchgott RF: The role of endothelium in the responses of vascular smooth muscle to drugs. Ann Rev Pharmacol Toxicol 24: 175–197, 1984.

    Article  CAS  Google Scholar 

  62. Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS: Modulation of vascular smooth muscle contraction by the endothelium. Ann Rev Physiol 48: 317–320, 1986.

    Article  Google Scholar 

  63. Bolton TB, Clapp LH: Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle. Br J Pharmacol 87: 713–733, 1986.

    PubMed  CAS  Google Scholar 

  64. Komori K, Suzuki H: Electrical responses of smooth muscle cells during cholinergic vasodilation in the rabbit saphenous artery. Circ Res 61: 586–593, 1987.

    PubMed  CAS  Google Scholar 

  65. Ito Y, Kitamura K, Kuriyama H: Effects of acetylcholine and catechholamine on the smooth muscle cell of the porcine coronary artery. J Physiol 294: 595–611, 1979.

    PubMed  CAS  Google Scholar 

  66. Kitamura K, Kuriyama H: Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea pig. J Physiol 239: 119–133, 1979.

    Google Scholar 

  67. Meech RF, Standen NB: Potassium activation in Helix aspersa neurones under voltage clamp: A component mediated by calcium influx. J Physiol 249: 211–239, 1975.

    PubMed  CAS  Google Scholar 

  68. Ito Y, Kitamura K, Kuriyama H: Nitroglycerine and catecholamine actions on smooth muscle cells by the canine coronary artery. J Physiol 309: 171–183, 1980.

    PubMed  CAS  Google Scholar 

  69. Casteels R, Suzuki H: The effect of histamine on the smooth muscle cells of the ear artery of the rabbit. Pfliigers Arch 387: 17–25, 1980.

    Article  CAS  Google Scholar 

  70. Toda N: Mechanism of histamine induced relaxation in isolated monkey and dog coronary artery. J Pharmacol Exp Ther 239: 529–535, 1986.

    PubMed  CAS  Google Scholar 

  71. Satoh S, Itoh T, Kuriyama H: Actions of angiotensin II and noradrenaline on smooth muscle cells of the canine mesenteric artery. Pfliigers Archiv 410: 132–138, 1987.

    Article  CAS  Google Scholar 

  72. Takata Y, Kuriyama H: Effects of angiotensin II and 1-Sar, 8-Isoleu angiotensin II on electrical and mechanical properties of the portal vein from rats of different ages. Jpn J Pharmacol 29: 639–651, 1979.

    Article  PubMed  CAS  Google Scholar 

  73. Zelcer E, Sperelakis N: Angiotensin induction of active responses in cultured reaggregates of rat aortic smooth muscle cells. Blood Vessels 18: 263–279, 1981.

    PubMed  CAS  Google Scholar 

  74. Johns DW, Sperelakis N: Angiotensin-II depolarization of cultured vascular smooth muscle cells (abstr 815). Circulation (Suppl 2) 66: II204, 1982.

    Google Scholar 

  75. Rapoport RM, Murad F: Agonist-induced endo thelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52: 351–357, 1983.

    Google Scholar 

  76. Vanhoutte PM: The end of the quest? Nature 327: 459–460, 1987. 104. Langer SZ: Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32: 337–362, 1981.

    CAS  Google Scholar 

  77. Hickey KA, Rubanyi G, Paul RJ, Highsmith RF: Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol 248: C550–C556, 1985.

    PubMed  CAS  Google Scholar 

  78. Luscher TF, Vanhoutte PM: Endothelium- dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8: 344–348, 1986.

    PubMed  CAS  Google Scholar 

  79. Harder DR, Madden J A: Electrical stimulation by the endothelial surface of pressurized cat middle cerebral artery results in TTX-sensitive vasoconstriction. Circ Res 60: 831–836, 1987.

    PubMed  CAS  Google Scholar 

  80. Nagao T, Suzuki H: Non-neural electrical responses of smooth muscle cells of the rabbit basilar artery to electrical field stimulation. Jpn J Physiol 37: 497–513, 1987.

    Article  PubMed  CAS  Google Scholar 

  81. Ousterhout J, Sperelakis N: Cyclic nucleotides depress action potentials in cultured aortic smooth muscle cells. Eur J Pharmacol 144: 7–14, 1987.

    Article  PubMed  CAS  Google Scholar 

  82. Ousterhout J, Sperelakis N: Cyclic nucleotides depress action potentials in cultured aortic smooth muscle cells. Eur J Pharmacol 144: 7–14, 1987.

    Article  PubMed  CAS  Google Scholar 

  83. Fujii K, Ishimatsu T, Kuriyama H: Mechanisms of vasodilation induced by a-human atrial natriuretic polypeptide in rabbit and guinea-pig renal arteries. J Physiol 377: 315–332, 1986.

    PubMed  CAS  Google Scholar 

  84. Fleckenstein A, Nakayama K, Fleckenstein-Griin G, Byon YK: Interactions of vasoactive ions and drugs with Ca-dependent excitation-contraction coupling of vascular smooth muscle. In Carafoli E (ed) Calcium Transport in Contraction and Secretion. Amsterdam: North Holland, 1975, pp 555–564.

    Google Scholar 

  85. Schnaar RC, Sparks HV: Response of large and small coronary arteries in nitroglycerin, NaN02 and adenosine. Am J Physiol 223: 223–228, 1972.

    PubMed  CAS  Google Scholar 

  86. Fleckenstein A: Specific pharmacology of calcium in myocardium, cardiac pacemaker and vascular smooth muscle. Ann Rev Pharmacol Toxicol 17: 149–166, 1977.

    Article  CAS  Google Scholar 

  87. Godfraind T, Miller R, Wibo M: Calcium antagonism and calcium entry blockade. Pharmacol Review 38: 321–416, 1986.

    CAS  Google Scholar 

  88. Ohya Y, Terada K, Satoh S, Fujiwara T, Nagao T, Komori K, Nozaki M, Kuriyama H: Action of calcium antagonists on smooth muscle cells of vascular tissues. Current knowledge on actions of Ca antagonist. In: Aoki K (ed) Essential Hypertension — Calcium Mechanisms and Treatment, Heidelberg: Springer-Verlag, 1986, pp 81 - 94.

    Google Scholar 

  89. Kohlhardt M, Bauer B, Krause H, Fleckenstein A: Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitors. Pfliigers Arch 335: 309–322, 1972.

    Article  CAS  Google Scholar 

  90. Kohlhardt M, Fleckenstein A: Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn-Schmiedebergs Arch Pharmacol 298: 267–272, 1977.

    Article  PubMed  CAS  Google Scholar 

  91. McLean MJ, Shigenobu K, Sperelakis N: Two pharmacological types of cardiac slow Na+ channels as distinguished by verapamil. Eur J Pharmacol 26: 379–382, 1974.

    Article  PubMed  CAS  Google Scholar 

  92. Vogel S, Crampton R, Sperelakis N: Blockade of myocardial slow channels by bepridil (CERM-1978). J Pharmacol Exp Ther 210: 378–385, 1979.

    PubMed  CAS  Google Scholar 

  93. Labrid C, Grosset A, Dureng G, Mironneau J, Duchene-Marullaz P: Some membrane interactions with bepridil, a new antianginal agent. J Pharmacol Exp Ther 211: 546–554, 1979.

    PubMed  CAS  Google Scholar 

  94. Peiper U, Griebel L, Wende W: Activation of vascular smooth muscle of rat aorta by noradrenaline and depolarization: Two different mechanisms. Pfliigers Arch 330: 74–89, 1971.

    Article  CAS  Google Scholar 

  95. Haeusler G: Differential effect of verapamil on excitation-contraction coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. J Pharmacol Exp Ther 180: 672- 682, 1972.

    Google Scholar 

  96. Massingham R: A study of compounds which inhibit vascular smooth muscle contraction. Eur J Pharmacol 22: 75–82, 1973.

    Article  PubMed  CAS  Google Scholar 

  97. Bilek I, Laven R, Peiper R, Regnat K: The effect of verapamil on the response to noradrenaline or to potassium-depolarization in isolated vascular strips. Microvasc Res 7: 181–189, 1974.

    Article  PubMed  CAS  Google Scholar 

  98. Cosnier D, Duchene-Marullaz P, Rispat G, Strei- chenberger G: Cardiovascular pharmacology of bepridil (l-[3-Isobutoxy-2-(benzyl-phenyl) amino] propyl pyrrolidine hydrochloride): A new potential anti-anginal compound. Arch Int Pharmacodyn Ther 225: 131–151, 1977.

    Google Scholar 

  99. Michelin FT, Cheucle M, Duchene-Marullaz P: Comparative influence of bepridil, dipyridimole and propranolol on cardiac activity and coronary venous blood flow in the anesthetized dog. Therapie 32: 485–490, 1977.

    PubMed  CAS  Google Scholar 

  100. Romano JP, Jouve A: Utilization clinique dun nou- vel anti-angineaux, le 1978 CERM (Bepridil, RL). Vie Med 1: 1789–1791, 1978.

    Google Scholar 

  101. Sperelakis N: Electrophysiology of vascular smooth muscle of coronary artery. In: Kalsner S (ed) The Coronary Artery. London: Croom Helm, 1982, pp 118–167.

    Google Scholar 

  102. Josephson I, Sperelakis N: Ouabain blockade of inward slow current in cardiac muscle. J Mol Cell Cardiol 9: 409–418, 1977.

    Article  PubMed  CAS  Google Scholar 

  103. Vanhoutte PM, Verbeuran TJ, Webb RC: Local modulation of the adrenergic neuroeffector interaction in the blood vessel wall. Physiol Rev 61: 151–247, 1981.

    PubMed  CAS  Google Scholar 

  104. Langer SZ: Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32: 337–362, 1981.

    Google Scholar 

  105. Neild TO, Zelcer E: Noradrenergic neuromuscular transmission with special reference to arterial smooth muscle. Prog Neurobiology 19: 141–158, 1982.

    Article  CAS  Google Scholar 

  106. Hirst GDS: Neuromuscular transmission in arterioles of guinea-pig submucosa. J Physiol 273: 263–275, 1977.

    PubMed  CAS  Google Scholar 

  107. Hirst GDS, Neild TO: An analysis of excitatory junction potentials recorded from arterioles. J Physiol 208: 87–104, 1978.

    Google Scholar 

  108. Hirst GDS, Neild TO: Localization of specialized noradrenaline receptors at neuromuscular junctions on arterioles of the guinea-pig. J Physiol 313: 343–350, 1981.

    PubMed  CAS  Google Scholar 

  109. Holman ME, Surprenant AM: Effects of tetraethy- lammonium chloride on sympathetic neuromuscular transmission in saphenous artery of young rabbits. J Physiol 305: 451–465, 1980.

    PubMed  CAS  Google Scholar 

  110. Kuriyama H, Suzuki H: Adrenergic transmission in the guinea-pig mesenteric artery and their cholinergic modulations. J Physiol 317: 383–396, 1981.

    PubMed  CAS  Google Scholar 

  111. Surprenant A: A comparative study of neuromuscular transmission in several mammalian muscular arteries. Pfliigers Arch 386: 85–91, 1980.

    Article  CAS  Google Scholar 

  112. Kuriyama H, Makita Y: Prejunctional regulation of noradrenaline release from nerve terminals differs in mesenteric arteries of rabbit and guinea-pig. J Physiol 351: 379–396, 1984.

    PubMed  CAS  Google Scholar 

  113. Kuriyama H, Makita Y: Modulation of neuromuscular transmission by endogenous and exogenous prostaglandins in the guinea-pig mesenteric artery. J Physiol 327: 431–448.

    Google Scholar 

  114. Ishikawa S, Sperelakis N: A novel class (H3) of histamine receptors on perivascular nerve terminals. Nature 327: 158–160, 1987.

    Article  PubMed  CAS  Google Scholar 

  115. Arrang JM, Garbarg M, Schwartz JC: Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302: 832–837, 1983.

    Article  PubMed  CAS  Google Scholar 

  116. Ishikawa S, Sperelakis N: Cyclic nucleotide regulation of neurotransmitter release in perivascular nerve terminals of guinea-pig mesenteric artery. Submitted.

    Google Scholar 

  117. Hermsmeyer K: High shortening velocity of isolated single arterial muscle cells. Experientia 35: 1599–1602, 1979.

    Article  PubMed  CAS  Google Scholar 

  118. Klockner U, Isenberg G: Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pfliigers Archiv 405: 329–339, 1985.

    Article  CAS  Google Scholar 

  119. Inoue R, Kitamura K, Kuriyama H: Two Ca2+ dependent K+ channels classified by the application of tetraethylammonium distributed to smooth muscle membranes of the rabbit portal vein. Pfliigers Archiv 405: 173–179, 1985.

    Article  CAS  Google Scholar 

  120. Hamill OP, Marty A, Neher E, Sackmann B, Sig- worth FJ; Improved patch-clamp technique for high- resolution current recording from cells and cell-free membrane patches. Pfliigers Archiv 391: 85–100, 1981.

    Article  CAS  Google Scholar 

  121. Klockner U, Isenberg G: Calcium currents of cesium loaded isolated smooth muscle cells (urinary bladder of the guinea-pig). Pfliigers Archiv 405: 340–348, 1985.

    Article  CAS  Google Scholar 

  122. Bean BP, Sturek M, Puga A, Hermsmeyer K: Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs. Circ Res 59: 229–235, 1986.

    PubMed  CAS  Google Scholar 

  123. Bean BP, Sturek M, Puga A, Hermsmeyer K: Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs. Circ Res 59: 229–235, 1986.

    PubMed  CAS  Google Scholar 

  124. Lee KS, Tsien RJ: Reversal of current through calcium channels in dialysed single heart cells. Nature 297: 498–501, 1982.

    Article  PubMed  CAS  Google Scholar 

  125. Okabe K, Kitomura K, Kuriyama H: Features of 4- aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery. Pfliigers Arch 409: 561–568, 1987.

    Article  CAS  Google Scholar 

  126. Friedmann E, Suarez-Kurtz G, Kaczorowski GJ, Katz GM, Reuben JP: Two calcium currents in a smooth muscle cell line. Am J Physiol 250: H699–H703, 1986.

    Google Scholar 

  127. Reuter H: Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574, 1983.

    Article  PubMed  CAS  Google Scholar 

  128. Tsien RW: Calcium channels in excitable cell membranes. Ann Rev Physiol 45: 341–358, 1983.

    Article  CAS  Google Scholar 

  129. Sperelakis N, Wahler GM, Bkaily G: Properties of myocardial calcium slow channels and mechanisms of action of calcium antagonistic drugs. In: Shamoo AE (ed) Current Topics in Membranes and Transport Vol 25. New York: Academic Press, 1985, pp 43–76.

    Google Scholar 

  130. Ohya Y, Kitamura K, Kuriyama H: Modulation of ionic current in smooth muscle balls of the rabbit intestine by intracellular perfused ATP and cAMP. Pfliigers Archiv 408: 465–473, 1987.

    Article  CAS  Google Scholar 

  131. Ohya Y, Kitamura K, Kuriyama H: Modulation of ionic current in smooth muscle balls of the rabbit intestine by intracellular perfused ATP and cAMP. Pfliigers Archiv 408: 465–473, 1987.

    Article  CAS  Google Scholar 

  132. Lee KS, Marban E, Tsien RW: Inactivation by calcium channel in mammalian heart cells: Joint dependence on membrane potential and intracellular calcium. J Physiol 364: 395–411, 1985.

    PubMed  CAS  Google Scholar 

  133. Josephson IR, Sanchez-Chapula J, Brown AM: A comparison of calcium currents in rat and guinea- pig single ventricular cells. Circ Res 54: 144–156, 1984.

    PubMed  CAS  Google Scholar 

  134. Aaronson PI, Benham CD, Bolton TB, Hess P, Lang RJ, Tsien RW: Two types of single-channel and whole-cell calcium or barium currrents in single smooth muscle cells of rabbit ear artery and the effects of noradrenaline. J Physiol 377: 36, 1986.

    Google Scholar 

  135. Droogmans G, Declerck I, Casteel R: Effect of ad-renergic agonists on Ca2+-channel currents in single ventricular smooth muscle cells. Pfliigers Archiv 409: 7–12, 1987.

    Article  CAS  Google Scholar 

  136. Pacaud P, Lorrand G, Mironneau C, Mironneau J: Opposing effects of noradrenaline on the two classes of voltage-dependent calcium channels of single vascular smooth muscle cells in short-term primary cultures. Pfliigers Archiv 410: 557–559, 1987.

    Article  CAS  Google Scholar 

  137. Yatani A, Seidel CL, Allen J, Brown AM: Whole- cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ Res 60: 523–533, 1987.

    PubMed  CAS  Google Scholar 

  138. Benham CD, Hess P, Tsien RW: Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single channel recordings. Circ Res (Suppl I ) 61: 110–116, 1987.

    Google Scholar 

  139. Rusch NJ, Hermsmeyer K: Altered calcium currents in vascular muscle cell membrane of spontaneously hypertensive rats. Physiologist 30: 185 (521), 1987.

    Google Scholar 

  140. Bean BP, Cohen CJ, Tsien RW: Lidocaine block of cardiac sodium channels. J Gen Physiol 81: 613–642, 1983.

    Article  PubMed  CAS  Google Scholar 

  141. Bean BP: Nitrendipine block of cardiac calcium channels: High-affinity binding to the inactivated state. Proc Nat Acad Sci USA 81: 6388 - 6392, 1984.

    Article  PubMed  CAS  Google Scholar 

  142. Hess P, Lansman JB, Tsien RW: Different modes of Ca2+ channel gating behavior favored by dihydropy- ridine Ca2+ agonists and antagonists. Nature 311: 538–544, 1984.

    Article  PubMed  CAS  Google Scholar 

  143. Caffrey JM, Josephson IR, Brown AM: Calcium channels of amphibian stomach and mammalian aorta smooth muscle cells. Biophys J 49: 1237–1242, 1986.

    Article  PubMed  CAS  Google Scholar 

  144. Benham CD, Bolton TB, Bryne NG, Large WA: Action of extracellular adenosine triphosphate in single smooth muscle cells dispersed from the rabbit ear artery. J Physiol 387: 473–488, 1987.

    PubMed  CAS  Google Scholar 

  145. Benham CD, Bolton TB, Byrne NG, Large WA: Action of externally applied adenosine triphosphate on smooth muscle cells dispersed from rabbit ear artery. 387: 473–488, 1987.

    Google Scholar 

  146. Marty A, Tan YP, Trautmann A: Three types of calcium-dependent channels in rat lacrimal glands. J Physiol 357: 293–325, 1984.

    PubMed  CAS  Google Scholar 

  147. Benham CD, Tsien RW: A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328: 275–278, 1987.

    Article  PubMed  CAS  Google Scholar 

  148. Benham CD, Bolton TB, Lang RJ, Takewaki T: The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+-channels in arterial and intestinal smooth muscle cell membrane. Pfliigers Archiv 403: 120–127, 1985.

    Article  CAS  Google Scholar 

  149. Singer JJ, Walsh JV: Characterization of calcium- activated potassium channels in single smooth muscle cells using the patch-clamp technique. Pfliigers Archiv 408: 98–111, 1987.

    Article  CAS  Google Scholar 

  150. Benham CD, Bolton TB: Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol 381: 385–406, 1986.

    PubMed  CAS  Google Scholar 

  151. Ohya Y, Kitamura K, Kuriyama H: Cellular calcium regulates outward currents in rabbit intestinal smooth muscle cell. Am J Physiol 252: C401–C410, 1987.

    PubMed  CAS  Google Scholar 

  152. Ohya Y, Terada K, Yamaguchi K, Inoue R, Okabe K, Kitamura K, Hiraza M, Kuriyama H: Effects of inositol phosphates on the membrane activity of smooth muscle cells of the rabbit portal vein — electrophysiological evidences. Submitted.

    Google Scholar 

  153. Sturek M, Hermsmeyer K: Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233: 475–478, 1986.

    Article  PubMed  CAS  Google Scholar 

  154. Sturek M, Hermsmeyer K: Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233: 475–478, 1986.

    Article  PubMed  CAS  Google Scholar 

  155. Shoemaker R, Naftel J, Farley J: Measurement of K+ and Cl~ channels in rat cultured vascular smooth muscle cells. Biophys J 47: 465a, 1985.

    Google Scholar 

  156. Shoemaker P, Worrell R, Magargal W, Farley J: Characteristics of anion channels in vascular smooth muscle. Fed Proc 507, 1987.

    Google Scholar 

  157. Benham CD, Tsien RW: Calcium-permeable channels in vascular smooth muscle: Voltage-activated receptor-activated, and leak channels. In: Mandel LJ, Eaton FC (ed) Cell Calcium and the Control of Membrane Transport, New York: Rockefeller Univ Press, 1987, pp 45 - 64.

    Google Scholar 

  158. KirberMT, Singer JJ, Walsh JV: Stretch-activated channels in freshly dissociated smooth muscle cells. Biophys J 51: 252a, 1987.

    Google Scholar 

  159. Itoh T, Satoh S, Ishimatsu T, Fujiwara T, Kanmura Y: Mechanisms of flunarizine-induced vasodilation in the rabbit mesenteric artery. Circ Res 61: 446–454, 1987.

    PubMed  CAS  Google Scholar 

  160. Suzuki H, Itoh T, Kuriyama H: Mechanisms of the bepridil-induced vasodilation of the rabbit mesenteric artery. J Pharmacol Exp Ther 235: 749–756,. 1986.

    Google Scholar 

  161. Saida K, van Breemen C: Inhibitory effect of dilti- azem on intracellular Ca2+ release in vascular smooth muscle. Blood Vessels 20: 105–108, 1983.

    PubMed  CAS  Google Scholar 

  162. Motulsky HJ, Snavely MD, Hughes RJ, Insel PA: Interaction of verapamil and other calcium channel blockers with ar and a2-adrenergic receptors. Circ Res 52: 226–231, 1983.

    PubMed  Google Scholar 

  163. Nishimura J, Kanaide H, Nakamura M: Binding of 3H prazosin to porcine aortic membranes: Interaction of calcium antagonists with vascular alpha-1 adrenoceptors. J Pharmacol Exp Ther 236: 789–793, 1986.

    PubMed  CAS  Google Scholar 

  164. Hescheler J, Pelzer D, Trube G, Trautwein W: Does the organic calcium channel blocker D-600 act from inside or outside on the cardiac cell membrane? Pfliigers Arch 393: 287–291, 1982.

    Article  CAS  Google Scholar 

  165. Ohya Y, Terada K, Kitamura K, Kuriyama H: D-600 blocks the Ca2+ channel from the outer surface of smooth muscle cell membrane of rabbit intestine and portal vein. Pfliigers Archiv 408: 80–82, 1987.

    Article  CAS  Google Scholar 

  166. Mras S, Sperelakis N: Comparison of 3H-bepridil and 3H-verapamil uptake into rabbit aortic rings. J Cardiovasc Pharmacol 4: 777–783, 1982.

    Article  PubMed  CAS  Google Scholar 

  167. Pang DC, Sperelakis N: Nifedipine, diltiazem, bep- ridil and verapamil uptakes into cardiac and smooth muscles. Eur J Pharmacol 87: 199–207, 1983.

    Article  PubMed  CAS  Google Scholar 

  168. Pang DC, Sperelakis N: Uptakes of calcium antagonists into muscles as related to their lipid solubilities. Biochem Pharmacol 33: 821–826, 1984.

    Article  PubMed  CAS  Google Scholar 

  169. Forbes MS, Sperelakis N: Bridging junctional processes in couplings of skeletal, cardiac, and smooth muscle. Muscle Nerve 5: 674 - 681, 1982.

    Article  Google Scholar 

  170. Ridgway EB, Gordon AM, Martyn DA: Hysteresis in the force-calcium relation in muscle. Science 219: 1075–1077, 1983.

    Article  PubMed  CAS  Google Scholar 

  171. Hartshorne DJ, Siemankowski RF: Regulation of smooth muscle actomyosin. Ann Rev Physiol 43: 519–530, 1981.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sperelakis, N., Ohya, Y. (1989). Electrophysiology of Vascular Smooth Muscle. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics