Skip to main content

On Cox’s Confidence Distribution

  • Chapter
Probability and Bayesian Statistics
  • 1218 Accesses

  • 2 Citations

Summary

A confidence distribution function is a graphical tool for flexible statistical analyses. It provides one- and two-sided tests of simple and interval hypotheses for any size, central and symmetrical confidence intervals of any level. Given an interval of equivalent values, it quantifies the strength of evidence for “no material difference” between two populations in a set of data, but is independent of the particular choice of such an interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bauer, H., 1968, “Wahrscheinlichkeitsrechnung und Grundzüge der Maβtheorie,” de Gruyter, Berlin.

    Google Scholar 

  • Cox, D. R., 1958, Some problems connected with statistical inference, Ann. Math. Statist., 29:357.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R., 1977, The role of significance tests (with discussion), Scand. J. Statist., 4:49.

    MathSciNet  MATH  Google Scholar 

  • Kallenberg, O., 1976, “Random Measures,” Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Lehmann, E. L., 1959, “Testing Statistical Hypothesis,” Wiley, New York.

    Google Scholar 

  • Mandallaz, D. and Mau, J., 1981, Comparison of different approaches to the assessment of bioequivalence, Biometrics, 37:213.

    Article  MathSciNet  MATH  Google Scholar 

  • Mau, J., 1983, Die Verwendung von Fiduzialwahrscheinlichkeiten zur Beurteilung der Bioäquivalenz, in: “Biometrie in der chemisch-pharmazeutischen Industrie 1,” Vollmar, J., ed., Gustav Fischer, Stuttgart.

    Google Scholar 

  • Mau, J., 1986, A statistical assessment of clinical equivalence, Res. Rep. 4/86, Statistics Proj. SFB 175, Univ. of Tubingen, Tubingen.

    Google Scholar 

  • Pedersen, J. G., 1978, Fiducial inference, Internat. Statist. Rev., 46:147.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, W., 1970, “Real and Complex Analysis,” McGraw -Hill, London.

    Google Scholar 

  • Spiegelhalter, D. J. and Freedman, L. S., 1986, A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion, Statistics in Medicine, 5:1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Mau, J. (1987). On Cox’s Confidence Distribution. In: Viertl, R. (eds) Probability and Bayesian Statistics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1885-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1885-9_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9050-6

  • Online ISBN: 978-1-4613-1885-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics