Skip to main content

Abstract

The auditory system is placed at risk during a variety of surgical procedures involving access to and manipulation in the posterior cranial fossa. During the course of such operations, monitoring of the auditory system can help identify critical anatomical structures or provide an early warning to forestall potential permanent damage. To realize the benefits of monitoring, all members of the care team, including the surgeon, the anesthesiologist, and the neurophysiologist, should be knowledgeable about surgical objectives, anatomical relationships, technical constraints of the monitoring modality as well as effects of surgical interventions and anesthesia on monitored parameters. The first section reviews important anatomical relationships as they relate to auditory function and recorded potentials. The second section discusses technical aspects of each monitoring modality. Finally, the third section briefly describes technical and physiologic problems that may cause changes in intraoperative monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 18.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jewitt DL, Willliston JS. Auditory-evoked far fields averaged from the scalp of humans. Brain. 1971;94:681–96.

    Article  Google Scholar 

  2. Picton TW, Hillyard SA, Krausz HI, Galambos R. Human auditory evoked potentials. In: evaluation of components. Electroencephalogr Clin Neurophysiol. 1974;36:179–90.

    Article  PubMed  CAS  Google Scholar 

  3. Møller AR. Neural generators for auditory brainstem evoked potentials. In: Burkard RF, Eggemont JJ, Manuel D, editors. Auditory evoked potentials: basic principles and clinical applications. Baltimore: Lippincott Williams & Wilkins; 2007. p. 336–54.

    Google Scholar 

  4. Strominger NL, Nelson LR, Dougherty WJ. Second order auditory pathways in the chimpanzee. J Comp Neurol. 1977;172:349–66.

    Article  PubMed  CAS  Google Scholar 

  5. Grundy BL, Jannetta PJ, Procopio PT, Lina A, Boston JR, Doyle E. Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg. 1982;57:674–81.

    Article  PubMed  CAS  Google Scholar 

  6. Friedman WA, Kaplan BJ, Gravenstein D, Rhoton Jr AL. Intraoperative brain-stem auditory evoked potentials during posterior fossa microvascular decompression. J Neurosurg. 1985;62:552–7.

    Article  PubMed  CAS  Google Scholar 

  7. Legatt AD. Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol. 2002;19:396–408.

    Article  PubMed  Google Scholar 

  8. Legatt AD, Arezzo JC, Vaughn Jr HG. The anatomic and physiologic bases of brainstem auditory evoked potentials. Neurol Clin. 1988;6:681–704.

    PubMed  CAS  Google Scholar 

  9. Gersdorff MCH. Simultaneous recordings of human auditory potentials: transtympanic electrocochleagraphy (ECoG) and brainstem-evoked responses (BER). Arch Otothinolaryngol. 1982;234:15–20.

    Article  CAS  Google Scholar 

  10. Legatt AD. Brainstem auditory evoked potentials: methodology, interpretation, and clinical application. In: Aminoff MJ, editor. Electrodiagnosis in clinical neurology. New York: Churchill Livingstone; 2005. p. 489–523.

    Chapter  Google Scholar 

  11. Møller AR, Jannetta PJ. Monitoring auditory functions during cranial nerve microvascular decompression operations by direct recording from the eighth nerve. J Neurosurg. 1983;59:493–9.

    Article  PubMed  Google Scholar 

  12. Møller AR, Jannetta PJ, Jho HD. Click-evoked response from the cochlear nucleus: a study in humans. Electroencephalogr Clin Neurophysiol. 1994;92:215–24.

    Article  PubMed  Google Scholar 

  13. Møller AR, Jho HD, Yokota M, Jannetta PJ. Contribution from crossed and uncrossed brainstem structures to the brainstem auditory evoked potentials (BAEP): a study in humans. Laryngoscope. 1995;105:596–605.

    Article  PubMed  Google Scholar 

  14. Chiappa KH, Roppper AH. Evoked potentials in clinical medicine (first of two parts). N Engl J Med. 1982;306:1205–11.

    Article  PubMed  CAS  Google Scholar 

  15. Duncan PG, Sanders RA, McCullough DW. Preservation of auditory-evoked brainstem responses in anaesthetized children. Can Anaesth Soc J. 1979;26:492–5.

    Article  PubMed  CAS  Google Scholar 

  16. Raudzens PA, Shetter AG. Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg. 1982;57:341–8.

    Article  PubMed  CAS  Google Scholar 

  17. Musiek FE, Weihing JA, Oxholm VB. Anatomy and physiology of the central auditory nervous system: a clinical perspective. In: Roeser RJ, Valente M, Hosford-Dunn H, editors. Audiology diagnosis, vol. 2. New York: Thieme Medical Publishers; 2007. p. 50–6.

    Google Scholar 

  18. Brunner MD, Umo-Etuk J, Sharpe RM, Thornton C. Effect of a bolus dose of midazolam on the auditory evoked response in humans. Br J Anaesth. 1999;82:633–4.

    Article  PubMed  CAS  Google Scholar 

  19. Deiber MP, Ibanez V, Fischer C, Perrin F, Mauguiere F. Sequential mapping favours the hypothesis of different generators for Na and Pa middle latency auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1988;71:187–97.

    Article  PubMed  CAS  Google Scholar 

  20. Thornton RM, Sharpe RM. Evoked responses in anaesthesia. Br J Anaesth. 1998;81:771–81.

    Article  PubMed  CAS  Google Scholar 

  21. Dutton RC, Smith WD, Rampil IJ, Chortkoff BS, Eger 2nd EI. Forty-hertz midlatency auditory evoked potential activity predicts wakeful response during desflurane and propofol anesthesia in volunteers. Anesthesiology. 1999;91:1209–20.

    Article  PubMed  CAS  Google Scholar 

  22. Goto T, Nakata Y, Saito H, Ishiguro Y, Niimi Y, Morita S. The midlatency auditory evoked potentials predict responsiveness to verbal commands in patients emerging from anesthesia with xenon, isoflurane, and sevoflurane, but not with nitrous oxide. Anesthesiology. 2001;94:782–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kileny P, Dobson D, Gelfand ET. Middle-latency auditory evoked responses during open-heart surgery with hypothermia. Electroencephalogr Clin Neurophysiol. 1983;55:268–76.

    Article  PubMed  CAS  Google Scholar 

  24. Woods DL, Clayworth CC, Knight RT. Middle latency auditory evoked potentials following cortical and subcortical lesions. Electroencephalogr Clin Neurophysiol. 1985;61:51.

    Google Scholar 

  25. Woods DL, Clayworth CC, Knight RT, Simpson GV, Naeser MA. Generators of middle- and long-latency auditory evoked potentials: implications from studies of patients with bitemporal lesions. Electroencephalogr Clin Neurophysiol. 1987;68:132–48.

    Article  PubMed  CAS  Google Scholar 

  26. Buchwald JS, Erwin RJ, Van Lancker D, Cummings JL. Midlatency auditory evoked responses: differential abnormality of P1 in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol. 1989;74:378–84.

    Article  PubMed  CAS  Google Scholar 

  27. Green JB, Flagg L, Freed DM, Schwankhaus JD. The middle latency auditory evoked potential may be abnormal in dementia. Neurology. 1992;42:1034–6.

    Article  PubMed  CAS  Google Scholar 

  28. Versino M, Bergamaschi R, Romani A, Banfi P, Callieco R, Citterio A, et al. Middle latency auditory evoked potentials improve the detection of abnormalities along auditory pathways in multiple sclerosis patients. Electroencephalogr Clin Neurophysiol. 1992;84:296–9.

    Article  PubMed  CAS  Google Scholar 

  29. Green JB, Elder WW, Freed DM. The P1 component of the middle latency auditory evoked potential predicts a practice effect during clinical trials in Alzheimer’s disease. Neurology. 1995;45:962–6.

    Article  PubMed  CAS  Google Scholar 

  30. Çelik M, Seleker FK, Sucu H, Forta H. Middle latency auditory evoked potentials in patients with parkinsonism. Parkinsonism Relat Disord. 2000;6:95–9.

    Article  PubMed  Google Scholar 

  31. Arakawa K, Tomia H, Tobimatsuc S, Kirab J. Middle latency auditory-evoked potentials in myotonic dystrophy: relation to the size of the CTG trinucleotide repeat and intelligence quotient. J Neurol Sci. 2003;207:31–6.

    Article  PubMed  Google Scholar 

  32. Kim HN, Kim YH, Park IY, Kim GR, Chung IH. Variability of the surgical anatomy of the neurovascular complex of the cerebropontine angle. Ann Otol Rhinol Laryngol. 1990;99:288–96.

    PubMed  CAS  Google Scholar 

  33. Nadol Jr JB, Levine R, Ojemann RG, Martuza RL, Montgomery WW, de Sandoval PK. Preservation of hearing in surgical removal of acoustic neuromas of the internal auditory canal and cerebellar pontine angle. Laryngoscope. 1987;97:1287–94.

    Article  PubMed  Google Scholar 

  34. Levine RA, Ronner SF, Ojemann RG. Auditory evoked potential and other neurophysiologic monitoring techniques during tumor surgery in the cerebellaopontine angle. In: Loftus CM, Traynelis VC, editors. Intraoperative monitoring techniques in neurosurgery. New York: McGraw-Hill; 1994. p. 175–91.

    Google Scholar 

  35. Yasargil MG. Microneurosurgery in CNS tumors, vol. 1. Stuttgart: Thieme Medical publishers; 1996. p. 95–108.

    Google Scholar 

  36. Bogousslavsky J, Caplan LR. Stroke syndromes. 2nd ed. New York: Cambridge University Press; 2001. p. 146.

    Book  Google Scholar 

  37. Little JR, Lesser RP, Luders H, Furlan AJ. Brainstem auditory evoked potentials in posterior circulation surgery. Neurosurgery. 1983;12:496–502.

    Article  PubMed  CAS  Google Scholar 

  38. Mannimen PH, Patterson S, Lam AM, Gelb AW, Nantau WE. Evoked potential monitoring during posterior fossa aneurysm surgery: a comparison of two modalities. Can J Anaesth. 1994;41:92–7.

    Article  Google Scholar 

  39. Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97:85–94.

    Article  PubMed  CAS  Google Scholar 

  40. Ferraro JA. Clinical electrocochleography: overview of theories, techniques and applications. http://www.audiologyonline.com/articles/pf_article_detail.asp?article_id=238. Accessed 14 July 2010.

  41. Coats AC. The summating potential and Menière’s disease. Arch Otolaryngol. 1981;107:199–208.

    Article  PubMed  CAS  Google Scholar 

  42. Bell SL, Smith DC, Allen R, Lutman ME. Recording the middle latency response of the auditory evoked potential as a measure of depth of anaesthesia. A technical note. Br J Anaesth. 2004;92:442–5.

    Article  PubMed  CAS  Google Scholar 

  43. Plourde G. Auditory evoked responses. Best Pract Res Clin Anesthesiol. 2006;20:129–39.

    Article  CAS  Google Scholar 

  44. Thornton C, Heneghan CPH, James MFM, Jones JG. Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials. Br J Anaesth. 1984;56:315–23.

    Article  PubMed  CAS  Google Scholar 

  45. Nishiyama T. Comparison of the two different auditory evoked potentials index monitors in propofol-fentanyl-nitrous oxide anesthesia. J Clin Anaesth. 2009;21:551–4.

    Article  CAS  Google Scholar 

  46. Sloan TB. Evoked potential monitoring of the central nervous system intraoperatively. Anesthesiol Clin North America. 1997;15:593–611.

    Article  Google Scholar 

  47. Legatt AD. Brainstem auditory evoked potentials (ABRs) and intraoperative ABR monitoring. Handbook Clin Neurophysiol. 2010;9:282–302.

    Article  Google Scholar 

  48. Chadwick GM, Asher AL, Van Der Veer CA, Pollard RJ. Adverse effects of topical papaverine on auditory nerve function. Acta Neurochir (Wien). 2008;150:901–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph N. Seubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Seubert, C.N., Herman, M. (2012). Auditory Evoked Potentials. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0308-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0308-1_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0307-4

  • Online ISBN: 978-1-4614-0308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics