Abstract
A discontinuity cannot exist in astrophysical plasma with magnetic field if small perturbations disintegrate it into other discontinuities or transform it to a more general non-steady flow. In this chapter we consider the so-called evolutionarity or structural stability of the classic discontinuous solution of the MHD equations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Acton, L.: Coronal structures, local and global. In: Uchida, Y., Kosugi, T., Hudson, H. (eds.) Magnetohydrodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity, pp. 3–11. Kluwer Academic, Dordrecht (1996) [Sect. 19.3.4]
Akhiezer, A.I., Lyubarskii, G.Ya., Polovin, R.V.: On the stability of shock waves in MHD. Sov. Phys. JETP 8(3), 507–512 (1959) [Sect. 17.2.1]
Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., et al.: Plasma Electrodynamics. Oxford, Pergamon (1975) [Sects. 15.4.5, 17.2.2]
Alekseyev, I.I., Kropotkin, A.P.: Passage of energetic particles through a MHD discontinuity. Geomagn. Aeron. 10(6), 755–758 (1970) [Sect. 18.3.1]
Alexander, D., Daou, A.G.: Saturation of nonthermal hard X-ray emission in solar flares. Astrophys. J. 666(2), 1268–1276 (2007) [Sects. 4.5.6, 4.6]
Alfaro, E.J., Pérez, E., Franco, J. (eds.): How does the Galaxy work? A galactic tertulia with Don Cox and Ron Reynolds. Kluwer Academic, Dordrecht (2004) [Sect. 9.8]
Alfvén, H.: On the solar origin of cosmic radiation. Phys. Rev. 75(11), 1732–1735 (1949) [Sect. 7.2]
Alfvén, H.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1950) [Intr., Sects. 12.2.2, 13.4, 15.2.2, 20.1.4]
Alfvén, H.: Cosmic Plasma, p. 164. D. Reidel Publishers, Dordrecht (1981) [Sect. 20.1.4]
Alfvén, H., Fälthammar, C.-G.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1963) [Sects. 8.1.4, 8.2.3, 11.1, 15.4.5]
Allred, J.C; Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630(1), 573–586 (2005) [Sect. 8.3.2]
Alperovich, L.S., Fedorov, E.N.: Hydromagnetic Waves in the Magnetosphere and Ionosphere, p. 426. Springer, Berlin (2007) [Sects. 11.1, 11.4.1]
Altyntsev, A.T., Krasov, V.I., Tomozov V.M.: Magnetic field dissipation in neutral current sheets. Solar Phys. 55(1), 69–81 (1977) [Sect. 12.3.1]
Anderson, J.E.: Magnetohydrodynamic Shock Waves, p. 226. MIT, Cambridge (1963) [Sects. 16.2.4(c), 17.4.2]
Andres, U.T., Polak, L.S., Syrovatskii, S.I.: Electromagnetic expulsion of spherical bodies from a conductive fluid. Soviet Phys. Tech. Phys. 8(3), 193–196 (1963) [Sects. 19.4.2, 20.4]
Anile, A.M.: Relativistic Fluids and Magneto-Fluids, p. 336. Cambridge University Press, Cambridge (1989) [Sect. 12.2]
Antonucci, E., Somov, B.V.: A diagnostic method for reconnecting magnetic fields in the solar corona. In: Coronal Streamers, Coronal Loops, and Coronal and Solar Wind Composition, Proceedings of First SOHO Workshop, ESA SP-348, pp. 293–294 (1992) [Sects. 8.3.3, 20.4]
Antonucci, E., Benna, C., Somov, B.V.: Interpretation of the observed plasma ‘turbulent’ velocities as a result of reconnection in solar flares. Astrophys. J. 456(2), 833–839 (1996) [Sects. 8.3.3, 20.4]
Arons, J.: Pulsar emission: Where to go? In: Becker, W. (ed.) Neutron Stars and Pulsars, pp. 373–420. Springer-Verlag, Berlin, Heidelberg (2009) [Sect. 12.2.5]
Aschwanden, M.J.: Particle Acceleration and Kinematics in Solar Flares: A Synthesis of Recent Observations and Theoretical Concepts, p. 227. Kluwer Academic, Dordrecht (2002) [Sect. 4.5.7]
Aschwanden, M.J.: Physics of the Solar Corona: An Introduction, p. 227. Springer, Berlin (2004) [Sect. 15.5]
Aschwanden, M.J., Kliem, B., Schwarz, U., et al.: Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505(2), 941–956 (1998) [Sect. 4.5.7]
Aschwanden, M.J., Nightingale, R.W., Andries, J., et al.: Observational tests of damping by resonant absorption in coronal loop oscillations. Astrophys. J. 598, 1375–1386 (2003) [Sect. 15.5]
Asmussen, S., Glynn, P.W.: Stochastic Simulations: Algorithms and Analysis, p. 476. Springer, New York (2007) [Sect. 3.4]
Atkinson, G., Unti, T.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The interior field. J. Geophys. Res. Space Phys. 74(14), 3713–3716 (1969) [Sect. 14.2.2(a)]
Atoyan, A.M., Aharonian, F.A.: Modeling of the non-thermal flares in the Galactic microquasar GRS 1915+105. Mon. Not. Roy. Astron. Soc. 302(1), 253–276 (1999) [Sect. 20.1.3]
Axford, W.I., Leer, E., Skadron, G.: The acceleration of cosmic rays by shock waves. In: Proc. 15th Int. Cosmic Ray Conf. (Plovdiv, August 13–26, 1977), Bulgarian Acad. Sci., Sofia, vol. 11, pp. 132–137 (1977) [Sect. 18.2.1]
Bachiller, R.: Bipolar molecular outflows from young stars and protostars. Ann. Rev. Astron. Astrophys. 34, 111–154 (1996) [Sect. 20.2]
Bai, T., Hudson, H.S., Pelling, R.M., et al.: First-order Fermi acceleration in solar flares as a mechanism for the second-step acceleration of protons and electrons. Astrophys. J. 267(1), 433–441 (1983) [Sect. 6.2.4]
Balbus, S.A., Papaloizou, J.C.B.: On the dynamical foundations of α disks. Astrophys. J. 521(2), 650–658 (1999) [Sect. 13.2.1]
Balescu, R.: Statistical Mechanics of Charged Particles, p. 477. Wiley, London (1963) [Sect. 4.1.2]
Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, London (1975) [Sect. 3.1.4]
Balescu, R.: Transport Processes in Plasmas. North-Holland, Amsterdam (1988) [Sect. 9.5]
Balikhin, M., Gedalin, M., Petrukovich, A.: New mechanism for electron heating in shocks. Phys. Rev. Lett. 70, 1259–1262 (1993) [Sect. 18.3.2(a)]
Balogh, A., Erdös, G.: Fast acceleration of ions at quasi-perpendicular shocks. J. Geophys. Res. 96(A9), 15853–15862 (1991) [Sect. 18.3.2(b)]
Barenblatt, G.I.: Similarity, Self-Similarity, and Intermediate Asymptotics. Plenum, New York (1979) [Sect. 20.4]
Becker, W. (ed.): Neutron Starts and Pulsars, p. 997. Springer, Berlin (2009) [Sects. 5.4, 7.3, 12.2.2]
Bednarek, W., Protheroe, R.J.: Gamma-ray and neutrino flares produced by protons accelerated on an accretion disc surface in active galactic nuclei. Mon. Not. Royal Astron. Soc. 302, 373–380 (1999) [Sect. 13.2.4]
Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984) [Sects. 7.3, 13.3.1, 13.3.3, 20.1.3]
Beloborodov, A.M.: Plasma ejection from magnetic flares and the X-ray spectrum of Cygnus X-1. Astrophys. J. 510, L123–L126 (1999) [Sect. 13.2.4]
Benz, A.: Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, 2nd edn., p. 299. Kluwer Academic, Dordrecht (2002) [Sects. 3.1.2, 7.1]
Bernstein, I.B., Frieman, E.A., Kruskal, M.D., et al.: An energy principle for hydromagnetic stability problems. Proc. Roy. Soc. 244(A1), 17–40 (1958) [Sect. 19.3.4]
Bertin, G.: The Dynamics of Galaxies, p. 448. Cambridge University Press, Cambridge (1999). [Sects. 1.3, 9.8]
Bethe, H.A.: Office of Scientific Research and Development, Rep. No. 445 (1942) [Sect. 17.1.1]
Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Analytical model of magnetic reconnection in the presence of shock waves attached to a current sheet. Astron. Lett. 33(2), 130–136 (2007) [Sect. 14.2.2(a)]
Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Generalized analytical models of Syrovatskii’s current sheet. Astron. Lett. 37(2), 113–130 (2011) [Sect. 14.2.2(a)]
Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954) [Sect. 9.9]
Bhattacharjee, A.: Impulsive magnetic reconnection in the Earth’s magnetotail and the solar corona. Ann. Rev. Astron. Astrophys. 42, 365–384 (2004) [Sect. 11.4.2]
Bianchini, A., Della Valle, M., Orio, M. (eds.): Cataclysmic Variables, p. 540. Kluwer Academic, Dordrecht (1995) [Sect. 13.2.2]
Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, New Jersey (1987) [Sects. 3.3.1, 8.5]
Birkinshaw, M.: Instabilities in astrophysical jets. In: de Gouveia Dal Pino, E.M., et al. (eds.) Advanced Topics on Astrophysical and Space Plasmas, pp. 17–91. Kluwer Academic, Dordrecht (1997) [Sect. 13.3.1]
Biskamp, D., Welter, H.: Magnetic arcade evolution and instability. Solar Phys. 120(1), 49–77 (1989) [Sect. 19.4.3]
Blackman, E.G.: On particle energization in accretion flow. Mon. Not. Roy. Astron. Soc. 302(4), 723–730 (1999) [Sect. 8.3.5]
Blackman, E.G., Field, G.B.: Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534(2), 984–988 (2000) [Sect. 13.1.2]
Blandford, R.D.: Particle acceleration mechanisms. Astrophys. J. Suppl. 90(2), 515–520 (1994) [Sects. 18.1, 18.2.1]
Bliokh, P., Sinitsin, V., Yaroshenko, V.: Dusty and Self-Gravitational Plasmas in Space, p. 250. Kluwer Academic, Dordrecht (1995) [Sect. 1.2.4]
Blokhintsev, D.I.: Moving receiver of sound. Doklady Akademii Nauk SSSR (Soviet Physics Doklady), 47(1), 22–25 (in Russian) (1945) [Sect. 15.2.1]
Bobrova, N.A., Syrovatskii, S.I.: Singular lines of 1D force-free field. Solar Phys. 61(2), 379–387 (1979) [Sect. 19.2.1(a)]
Bocquet, M., Bonazzola, S., Gourgoulhon, E., et al.: Rotating neutron star models with a magnetic field. Astron. Astrophys. 301(3), 757–775 (1995) [Sect. 19.1.3]
Bodmer, R., Bochsler, P.: Influence of Coulomb collisions on isotopic and elemental fractionation in the solar wind. J. Geophys. Res. 105(A1), 47–60 (2000) [Sects. 8.4.1(b), 10.1]
Bogachev, S.A., Somov, B.V.: Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett. 35(1), 57–69 (2009) [Sect. 8.1.4]
Bogdanov, S.Yu., Frank, A.G., Kyrei, N.P., et al.: Magnetic reconnection, generation of plasma fluxes and accelerated particles in laboratory experiments. Plasma Astrophys. ESA SP-251, 177–183 (1986) [Sect. 12.3.1]
Bogdanov, S.Yu., Kyrei, N.P., Markov, V.S., et al.: Current sheets in magnetic configurations with singular X-lines. JETP Lett. 71(2), 78–84 (2000) [Sect. 12.3.1]
Bogoliubov, N.N.: Problems of a Dynamical Theory in Statistical Physics. State Technical Press, Moscow (in Russian) (1946) [Sect. 2.4]
Bolcato, R., Etay, J., Fautrelle, Y., et al.: Electromagnetic billiards. Phys. Fluids 5(A7), 1852–1853 (1993) [Sect. 20.5]
Boltzmann, L.: Sitzungsber. Kaiserl. Akad. Wiss. Wien. 66, 275–284 (1872) [Sects. 3.5, 9.6.1]
Boltzmann, L.: Lectures on the Theory of Gases. Gostehizdat, Moscow (in Russian) (1956) [Sects. 3.5, 9.6.1]
Bondi, H.: On spherical symmetrical accretion. Mon. Not. Roy. Astron. Soc. 112(1), 195–204 (1952) [Sect. 13.2.3]
Bontemps, S., André, P., Terebey, S., et al.: Evolution of outflow activity around low-mass embedded young stellar objects. Astron. Astrophys. 311, 858–875 (1996) [Sect. 20.2]
Born, M., Green, H.S.: A General Kinetic Theory of Liquids. Cambridge University Press, Cambridge (1949) [Sect. 2.4]
Bradt, H.: Astrophysics Processes, p. 504. Cambridge University Press, Cambridge (2008) [Sects. 3.1.1, 9.5.2, 13.2.3]
Braginskii, S.I.: Transport processes in plasma. In: Leontovich, M. (ed.) Reviews of Plasma Physics, vol. 1, pp. 205–311. Consultants Bureau, New York (1965) [Sects. 8.3.2, 9.6, 10.5, 11.4.2]
Bridgman, P.W.: Dimensional Analysis, p. 113. Yale University Press, New Haven (1931) [Sect. 20.4]
Broderick, A., Prakash, M., Lattimer, J.M.: The equation of state of neutron star matter in strong magnetic fields. Astrophys. J. 537(1), 351–367 (2000) [Sect. 19.1.3]
Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18(2), 489–502 (1971) [Sects. 4.3.4, 8.1.5]
Brown, J.C.: The directivity and polarization of thick target X-ray bremsstrahlung from flares. Solar Phys. 26(2), 441–459 (1972) [Sects. 4.4.1, 4.4.2]
Brown, J.C., McArthur, G.K., Barrett, R.K., et al.: Inversion of the thick-target bremsstrahlung spectra from non-uniformly ionized plasmas. Solar Phys. 179(2), 379–404 (1998a) [Sect. 4.5.7]
Brown, J.C., Conway, A.J., Aschwanden, M.J.: The electron injection function and energy-dependent delays in thick-target hard X-rays. Astrophys. J. 509(2), 911–917 (1998b) [Sect. 4.5.7]
Brown, J.C., Emslie, A.G., Kontar, E.P.: The determination and use of mean electron flux spectra in solar flares. Astrophys. J. 595(2), L115–L117 (2003) [Sect. 4.5.7]
Bykov, A.M., Chevalier, R.A., Ellison, D.C., et al.: Non-thermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538(1), 203–216 (2000) [Sect. 8.4.1(b)]
Cadjan, M.G., Ivanov, M.F.: Langevin approach to plasma kinetics with collisions. J. Plasma Phys. 61(1), 89–106 (1999) [Sect. 3.4]
Cai, H.J., Lee, L.C.: The generalized Ohm’s law in collisionless reconnection. Phys. Plasmas 4(3), 509–520 (1997) [Sect. 1.2.4]
Camenzind, M.: Magnetic fields and the physics of active galactic nuclei. Rev. Mod. Astron. 8, 201–233 (1995) [Sect. 13.3.3]
Campbell, C.G.: Magnetohydrodynamics of Binary Stars, p. 306. Kluwer Academic, Dordrecht (1997) [Sect. 13.2.1]
Cassak, P.A., Drake, J.F., Shay, M.A., et al.: Onset of fast magnetic reconnection. Phys. Rev. Lett. 98(21), id. 215001 (2007) [Sect. 11.4.2]
Cercignani, C.: Mathematical Methods in Kinetic Theory. MacMillan, London (1969) [Sect. 3.5]
Chakrabarti, S.K. (ed.): Observational Evidence for Black Holes in the Universe, p. 399. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]
Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943a) [Sects. 3.1.4, 8.1.5, 8.3.1]
Chandrasekhar, S.: Dynamical friction. 1. General considerations. Astrophys. J. 97(1), 255–262 (1943b) [Sects. 3.1.4, 8.3.1, 8.5]
Chandrasekhar, S.: Dynamical friction. 2. The rate of escape of stars from clusters and the evidence for the operation of dynamic friction. Astrophys. J. 97(1), 263–273 (1943c) [Sects. 8.3.1, 8.5]
Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, p. 654. Dover, New York (1981) [Sects. 19.1.2, 19.3.4]
Chandrasekhar, S., Fermi, E.: Problems of gravitational stability in the presence of a magnetic field. Astrophys. J. 118(1), 116–141 (1953) [Sect. 19.1.1]
Cherenkov, P.A.: C. R. Acad. Sci. U.S.S.R. 8, 451 (in Russian) (1934) [Sect. 7.4]
Cherenkov, P.A.: Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937) [Sect. 7.4]
Chernov, A.A., Yan’kov, V.V.: Electron flow in low-density pinches. Soviet J. Plasma Phys. 8(5), 522–528 (1982) [Sect. 20.4]
Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. Roy. Soc. Lond. A236(1), 112–118 (1956) [Sects. 5.2.1, 11.5.1, 16.4]
Choudhuri, A.R.: The Physics of Fluids and Plasmas: An Introduction for Astrophysicists, p. 427. Cambridge University Press, Cambridge (1998) [Intr., Sect. 19.1.2]
Ciufolini, I., Matzner, R.A. (eds.): General Relativity and John Archibald Wheeler, p. 545. Springer Science+Business Media B.V., Dordrecht (2010) [Sect. 13.3.2]
Clarke, C., Carswell, P.: Principles of Astrophysical Fluid Dynamics, p. 226. Cambridge University Press, Cambridge (2007) [Sect. 9.5.2]
Clausius, R.: On a mechanical theorem applicable to heat. Phil. Mag. (Series 4) 40(1), 122–127 (1870) [Sect. 19.1.1]
Cole, J.D., Huth, J.H.: Some interior problems of hydromagnetics. Phys. Fluids 2(6), 624–626 (1959) [Sect. 14.5]
Collins, G.W.: The Virial Theorem in Stellar Astrophysics. Pachart, Tucson (1978) [Sect. 19.1.1]
Colpi, M., Casella, P., Gorini, V., et al. (eds.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Springer, Dordrecht (2009) [Sect. 12.2.2]
Coppi, B., Laval, G., Pellat, R.: Dynamics of the geomagnetic tail. Phys. Rev. Lett. 6(26), 1207–1210 (1966) [Sect. 3.1.2]
Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, p. 464. Springer, New York (1985) [Sect. 17.1.1]
Cowling, T.G.: Magnetohydrodynamics, p. 135. Adam Hilger, Bristol (1976) [Sect. 11.6]
Cox, D.P., Tucker, W.H.: Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157(3), 1157–1167 (1969) [Sects. 12.1.3, 15.4.1]
Cromwell, D., McQuillan, P., Brown, J.C.: Beam-driven return current instability and anomalous plasma heating in solar flares. Solar Phys. 115(2), 289–312 (1988) [Sect. 4.5.6]
Crooker, N., Joselyn, J.A., Feynman, J. (eds.): Coronal Mass Ejections, p. 299. American Geophysical Union, Washington (1997) [Intr.]
Cumming, A., Arras, P., Zweibel, E.: Magnetic field evolution in neutron star crusts due to the Hall effect and ohmic decay. Astrophys. J. 609, 999–1017 (2004) [Sect. 11.4.2]
Cuperman, S., Dryer, M.: On the heat conduction in multicomponent, non-Maxwellian spherically symmetric solar wind plasmas. Astrophys. J. 298, 414–420 (1985) [Sect. 9.6.2]
Dadhich, N., Kembhavi, A. (eds): The Universe: Visions and Perspectives, p. 346. Kluwer Academic, Dordrecht (2000) [Sect. 1.3]
Darwin, C.: Source of the cosmic rays. Nature 164, 1112–1114 (1949) [Sect. 18.1]
Davidson, R.C.: Theory of Nonneutral Plasmas. W.A. Benjamin, London (1974) [Sect. 11.5.2]
Davis, L.Jr.: Modified Fermi mechanism for the acceleration of cosmic rays. Phys. Rev. 101, 351–358 (1956) [Sect. 6.2.4]
de Hoffmann, F., Teller, E.: Magnetohydrodynamic shocks. Phys. Rev. 80(4), 692–703 (1950) [Sects. 16.2.1, 16.2.4(a), 16.5]
de Martino, D., Silvotti, R., Solheim, J.-E., et al. (eds.): White Dwarfs, p. 429. Kluwer Academic, Dordrecht (2003) [Sects. 1.4, 3.5]
Debye, P., Hückel, E.: Phys. Z 24, 185 (1923) [Sect. 8.2.1]
Decker, R.B.: Formation of shock-spike events in quasi-perpendicular shocks. J. Geophys. Res. 88(A12), 9959–9973 (1983) [Sect. 18.3.2(a) (a)]
Decker, R.B.: The role of magnetic loops in particle acceleration at nearly perpendicular shocks. J. Geophys. Res. 98(A1), 33–46 (1993) [Sect. 18.3.2(b) (b)]
Decker, R.B., Vlahos, L.: Numerical studies of particle acceleration at turbulent, oblique shocks with an application to prompt ion acceleration during solar flares. Astrophys. J. 306(2), 710–729 (1986) [Sect. 18.3.3]
Diakonov, S.V., Somov, B.V.: Thermal electrons runaway from a hot plasma during a flare in the reverse-current model and their X-ray bremsstrahlung. Solar Phys. 116(1), 119–139 (1988) [Sects. 4.5.2, 4.5.3, 4.5.5, 8.4.3, 9.7.3]
Diakonov, S.V., Somov, B.V.: A thermal model with return current for source of hard X-ray radiation and microwave radiation of solar flare. Kinematics Phys. Celes. Bodies (Allerton Press, Inc.) 6(1), 47–53 (1990) [Sect. 4.5.5]
Diamond, P.H., Itoh, S.I., Itoh, K.: Modern Plasma Physics. Vol. 1: Physical Kinetics of Turbulent Plasmas, p. 417. Cambridge University Press, Cambridge (2010) [Intr., Sect. 3.1.2]
Di Matteo, T., Celotti, A., Fabian, A.C.: Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: The case of GX339-4. Mon. Not. Roy. Astron. Soc. 304, 809–820 (1999) [Sect. 13.2.4]
Di Matteo, T., Quataert, E., Allen, S.W., et al.: Low-radiative-efficiency accretion in the nuclei of elliptic galaxies. Mon. Not. Roy. Astron. Soc. 311(3), 507–521 (2000) [Sect. 13.2.3]
Di Matteo, T., Johnstone, R.M., Allen, S.W., et al.: Accretion onto nearby supermassive black holes: Chandra constraints on the dominant cluster galaxy NGC 6166. Astrophys. J. 550(1), L19–L23 (2001) [Sect. 13.2.3]
Dokuchaev, V.P.: Emission of magnetoacoustic waves in the motion of stars in cosmic space. Sov. Astron. AJ 8(1), 23–31 (1964) [Sect. 15.6]
Dorman, L.: Cosmic Rays in Magnetospheres of the Earth and other Planets, p. 770. Springer Science+Business Media B.V., Dordrecht (2009) [Sect. 5.1.3]
Drake, J.F., Kleva R.G.: Collisionless reconnection and the sawtooth crash. Phys. Rev. Lett. 66(11), 1458–1461 (1991) [Sect. 11.2]
Dreicer, H.: Electron and ion runaway in a fully ionized gas Phys. Rev. 115(2), 238–249 (1959) [Sects. 8.4.2, 10.1]
Duijveman, A., Somov, B.V., Spektor, A.R.: Evolution of a flaring loop after injection of fast electrons. Solar Phys. 88(1), 257–273 (1983) [Sect. 8.3.2]
Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. Astrophys. J. 392(1), L9–L13 (1992) [Sect. 13.1.2]
D’yakov, S.P.: Zhurnal Exper. Teor. Fiz. 27, 288–297 (in Russian) (1954) [Sect. 17.5]
Dyer, K.K., Reynolds, S.R., Borkowski, K.J., et al.: Separating thermal and non-thermal X-rays in supernova remnants. I. Total fits to SN 1006 AD. Astrophys. J. 551(1), 439–453 (2001) [Sect. 18.2.1]
Eichler, D.: Particle acceleration in solar flares by cyclotron damping of cascading turbulence. Astrophys. J. 229(1), 413–418 (1979) [Sect. 6.2.4]
Elperin, T., Golubev, I., Kleeorin, N., et al.: Large-scale instability in a sheared nonhelical turbulence: Formation of vortical structures. Phys. Rev. E 76(6), id. 066310 (2007) [Sect. 13.1.2]
Elsasser, W.M.: Hydromagnetic dynamo theory. Rev. Mod. Phys. 28(2), 135–163 (1956) [Sects. 13.1.2, 20.1.5]
Erdös, G., Balogh, A.: Drift acceleration at interplanetary shocks. Astrophys. J. Suppl. 90(2), 553–559 (1994) [Sect. 18.3.2(b)]
Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., et al.: Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101–221105 (2011) [Sect. 13.3.2]
Falle, S.A., Komissarov, S.S.: On the inadmissibility of non-evolutionary shocks. J. Plasma Phys. 65(1), 29–58 (2001) [Sect. 16.3]
Fedoryuk, V.M.: Ordinary Differential Equations. Nauka, Moscow (in Russian) (1985) [Sect. 17.4.1]
Feldman, W.C., Bame, S.J., Gary, S.P., et al.: Electron heating within the Earth’s bow shock. Phys. Rev. Lett. 49, 199–202 (1982) [Sect. 18.3.2(a)]
Ferencz, C., Ferencz, O.E., Hamar, D., et al.: Whistler Phenomena, p. 260. Kluwer Academic, Dordrecht (2001) [Sect. 7.1.3]
Fermi, E.: On the origin of cosmic radiation. Phys. Rev. 75, 1169–1174 (1949) [Sect. 6.2.4]
Fermi, E.: Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119(1), 1–6 (1954) [Sect. 6.2.4]
Fernández, J.A.: Comets: Nature, Dynamics, Origin, and their Cosmogonical Relevance, p. 383. Springer, Dordrecht (2005) [Sect. 1.2.4]
Feroci, M., Hurley, K., Duncan, R.C., et al.: The giant flare of 1998 August 27 from SGR 1900+14. 1. An interpretive study of Bepposax and Ulysses observations. Astrophys. J. 549, 1021–1038 (2001) [Sect. 19.1.3]
Field, G.B.: Thermal instability. Astrophys. J. 142(2), 531–567 (1965) [Sects. 8.3.4, 9.4.3, 12.1.3, 15.4.5]
Fokker, A.D.: Die mittlere Energie rotieren der elektrischer Dipole im Strahlungsfeld. Ann. der Physik 43(5), 810–820 (1914) [Sect. 3.1.4]
Fortov, V.E., Iakubov, I.T., Khrapak, A.G.: Physics of Strongly Coupled Plasma, p.376. Clarendon Press, Oxford (2006) [Sect. 3.1.1]
Fox, D.C., Loeb, A.: Do the electrons and ions in X-ray clusters share the same temperature? Astrophys. J. 491(2), 459–466 (1997) [Sect. 8.3.4]
Freidberg, J.P.: Plasma Physics and Fusion Energy, p. 671. Cambridge University Press, Cambridge (2007) [Intr.]
Galeev, A.A., Rosner, R., Vaiana, G.S.: Structured coronae of accretion discs. Astrophys. J. 229(1), 318–326 (1979) [Sect. 13.2.4]
Gedalin, M., Griv, E.: Collisionless electrons in a thin high Much number shocks: Dependence on angle and β. Ann. Geophysicae 17(10), 1251–1259 (1999) [Sects. 16.4, 18.3.2(a)]
Gel’fand, I.M.: Some problems of the theory of quasilinear equations. Usp. Mat. Nauk 14(2), 87–158 (in Russian) (1959) [Sect. 17.1.1]
Gerbeth, G., Thess, A., Marty, P.: Theoretical study of the MHD flow around a cylinder in crossed electric and magnetic fields. Eur. J. Mech. B/Fluids 9(3), 239–257 (1990) [Sects. 19.4.2, 20.3]
Germain, P.: Shock waves and shock-wave structure in magneto-fluid dynamics. Rev. Mod. Phys. 32(4), 951–958 (1960) [Sect. 17.4.2]
Giacalone, J., Ellison, D.C.: Three-dimensional numerical simulations of particle injection and acceleration at quasi-perpendicular shocks. J. Geophys. Res. 105(A6), 12541–12556 (2000) [Sects. 18.1, 18.3.2(b)]
Gieseler, U.D.J., Kirk, J.G., Gallant, Y.A., et al.: Particle acceleration at oblique shocks and discontinuities of the density profile. Astron. Astrophys. 435(1), 298–306 (1999) [Sect. 18.2.1]
Gilman, P.A.: Fluid dynamics and MHD of the solar convection zone and tachocline. Solar Phys. 192(1), 27–48 (2000) [Sect. 20.1.5]
Ginzburg, V.L., Syrovatskii, S.I.: The Origin of Cosmic Rays. Pergamon Press, Oxford (1964) [Sect. 5.1.3]
Ginzburg, V.L., Syrovatskii, S.I.: Cosmic magneto-bremsstrahlung (synchrotron) radiation. Annu. Rev. Astron. Astrophys. 3, 297–350 (1965) [Sect. 5.4]
Ginzburg, V.L., Zheleznyakov, V.V.: On the possible mechanisms of sporadic solar radio emission. Sov. Astron. AJ 2(5), 653–668 (1958) [Sect. 7.1]
Ginzburg, V., Landau, L., Leontovich, M., et al.: On the insolvency of the A.A. Vlasov works on general theory of plasma and solid-state matter. Zhur. Eksp. Teor. Fiz. 16(3), 246–252 (in Russian) (1946) [Sect. 3.1.2]
Giovanelli, R.G.: A theory of chromospheric flares. Nature 158(4003), 81–82 (1946) [Sect. 12.4.1]
Giovanelli, R.G.: Magnetic and electric phenomena in the Sun’s atmosphere associated with sunspots. Mon. Not. Roy. Astron. Soc. 107(4), 338–355 (1947) [Sect. 12.4.1]
Giovanelli, R.G.: Electron energies resulting from an electric field in a highly ionized gas. Phil. Mag. Seventh Series 40(301), 206–214 (1949) [Sect. 8.4.2]
Gisler, G., Lemons, D.: Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models. J. Geophys. Res. 95(A9), 14925–14938 (1990) [Sect. 18.3.2(b)]
Glasstone, S., Loveberg, R.H.: Controlled Thermonuclear Reactions, p. 523. Van Nostrand, Princeton (1960) [Intr.]
Gnedenko, B.V.: A Course of Probability Theory, 4th edn. Nauka, Moscow (in Russian) (1965) [Sect. 2.2.2]
Golant, V.E., Zhilinskii, A.P., Sakharov, I.E.: The Basis of Plasma Physics. Atomizdat, Moscow (in Russian) (1977) [Sects. 9.3.2, 9.7.1, 9.7.2]
Goldreich, P., Reisenegger, A.: Magnetic field decay in isolated neutron stars. Astrophys. J. 395(1), 250–258 (1992) [Sect. 11.4.2]
Goldreich, P., Sridhar, S.: Magnetohydrodynamic turbulence revisited. Astrophys. J. 485(2), 680–688 (1997) [Sect. 7.2]
Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics, p. 492. Institute of Physics Publishing, Bristol (1995) [Intr.]
Gombosi, T.I.: Physics of the Space Environment, p. 339. Cambridge University Press, Cambridge (1999) [Sect. 18.2.1]
Gorbachev, V.S., Kel’ner, S.R.: Formation of plasma condensations in fluctuating strong magnetic field. Sov. Phys. JETP 67(9), 1785–1790 (1988) [Sect. 14.4.1]
Gosling, J.T.: Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. 671(1), L73–L76 (2007) [Sect. 12.4.2]
Gosling, J.T., Eriksson, S., McComas, D.J., et al.: Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind. Geophys. Res. 112(A8), CiteID A08106 (2007a) [Sect. 11.5.1]
Gosling, J.T., Eriksson, S., Phan, T.D., et al.: Direct evidence for prolonged magnetic reconnection at a continuous X-line within the heliospheric current sheet. Geophys. Res. Lett. 34(6), CiteID L06102 (2007b) [Sect. 12.4.2]
Grad, H.: Note on N-dimensional Hermite polynomials. Commun. Pure Appl. Math. 2(4), 325–330 (1949)[Sect. 9.7.1]
Grad, H.: Reducible problems in magneto-fluid dynamic steady flows. Rev. Mod. Phys. 32(4), 830–847 (1960) [Sect. 19.5]
Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. Proc. Second Int. Conf. on Peaceful Uses of Atomic Energy 31, 190–197 (1958) [Sect. 19.5]
Grant, H.L., Stewart, R.W., Moilliet, A.: Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–248 (1962) [Sect. 7.2]
Gritsyk, P.A., Somov, B.V.: The kinetic description of the accelerated-electron flux in solar flares. Moscow Univ. Phys. Bull. 66(5), 466–472 (2011) [Sect. 4.5.5]
Gurevich, A.V.: On the theory of runaway electrons. Sov. Phys. JETP 12(5), 904–912 (1961) [Sect. 8.4.2]
Gurevich, A.V., Istomin, Y.N.: Thermal runaway and convective heat transport by fast electrons in a plasma. Sov. Phys. JETP 50(3), 470–475 (1979) [Sect. 8.4.3]
Gurevich, A.V., Zhivlyuk, Y.N.: Runaway electrons in a non-equilibrium plasma. Sov. Phys. JETP 22(1), 153–159 (1966) [Sect. 4.5.2]
Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23(1), 115–121 (1962) [Sect. 3.1.2]
Hattori, M., Umetsu, K.: A possible route to spontaneous reduction of the heat conductivity by a temperature gradient-driven instability in electron-ion plasmas. Astrophys. J. 533(1), 84–94 (2000) [Sect. 8.3.4]
Hawley, J.F., Balbus, S.A.: Instability and turbulence in accretion discs. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 187–194. Kluwer Academic, Dordrecht (1999) [Sect. 13.2.1]
Hawley, J.F., Gammie, C.F., Balbus, S.A.: Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440(2), 742–763 (1995) [Sect. 13.2.1]
Heinemann, T., McWilliams, J.C., Schekochihin, A.A.: Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett., 107(25), 255004 (2011) [Sect. 13.1.2]
Hénoux, J.-C., Somov, B.V.: Generation and structure of the electric currents in a flaring activity complex. Astron. Astrophys. 185(1), 306–314 (1987) [Sect. 20.2]
Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 1. Magnetic flux-tube generation. Astron. Astrophys. 241(2), 613–617 (1991) [Sects. 11.1, 20.2]
Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 2. Physics of thin magnetic flux tubes. Astron. Astrophys. 318(3), 947–956 (1997) [Sect. 11.1]
Hirotani, K., Okamoto, I.: Pair plasma production in a force-free magnetosphere around a supermassive black hole. Astrophys. J. 497(2), 563–572 (1998) [Sects. 7.3, 11.5.2]
Hollweg, J.V.: Viscosity and the Chew-Goldberger-Low equations in the solar corona. Astrophys. J. 306(2), 730–739 (1986) [Sects. 9.6, 10.5]
Holman, G.D.: DC electric field acceleration of ions in solar flares. Astrophys. J. 452(2), 451–456 (1995) [Sect. 8.4.1(b)]
Horiuchi, R., Sato, T.: Particle simulation study of driven reconnection in a collisionless plasma. Phys. Plasmas 1(11), 3587–3597 (1994) [Sects. 1.2.4, 11.2]
Hoshino, M., Stenzel, R.L., Shibata, K. (eds.): Magnetic Reconnection in Space and Laboratory Plasmas, p. 693. Terra Scientific Publ. Co., Tokyo (2001) [Sect. 13.1.3]
Hoyng, P., Brown, J.C., van Beek, H.F.: High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Solar Phys. 48(2), 197–254 (1976) [Sect. 4.5.1]
Hubrig, S., North, P., Mathys, G.: Magnetic Ap stars in the Hertzsprung-Russell diagram. Astrophys. J. 539(1), 352–363 (2000) [Sect. 19.1.3]
Hudson, P.D.: Reflection of charged particles by plasma shocks. Mon. Not. Roy. Astron. Soc. 131(1), 23–50 (1965) [Sects. 18.3, 18.3.1, 18.3.2(a)]
Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations, p. 284. Springer Science+Business Media, LLC, New York (2008) [Sect. 3.4]
Imshennik, V.S., Bobrova, N.A.: Dynamics of Collisional Plasma. Energoatomizdat, Moscow (in Russian) (1997) [Sect. 15.4.4]
Innes, D.E., Inhester, B., Axford, W.I., et al.: Bi-directional jets produced by reconnection on the Sun. Nature 386, 811–813 (1997) [Sect. 8.3.3]
Iordanskii, S.V.: On compression waves in magnetohydrodynamics. Sov. Phys. Doklady 3(4), 736–738 (1958) [Sect. 16.2.4(c)]
Iroshnikov, P.S.: Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. AJ. 7(4), 566–571 (1964) [Sect. 7.2.3]
Jaroschek, C.H., Treumann, R.A., Lesch, H., et al.: Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasm. 11(3), 1151–1163 (2004) [Sect. 7.3]
Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929) [Sect. 8.1.5]
Jones, F.C., Ellison D.C.: The plasma physics of shock acceleration. Space Sci. Rev. 58(3), 259–346 (1991) [Sects. 18.1, 18.2.1, 18.3.1]
Jones, M.E., Lemons, D.S., Mason, R.J., et al.: A grid-based Coulomb collision model for PIC codes. J. Comput. Phys.123(1), 169–181 (1996) [Sect. 3.4]
Kadomtsev, B.B.: Convective instability of a plasma. In: Leontovich, M.A. (ed.) Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 4, pp. 450–453. Pergamon Press, Oxford (1960) [Sect. 19.3.4]
Kadomtsev, B.B.: Hydrodynamic stability of a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 153–198. Consultants Bureau, New York (1966) [Sects. 15.4.1, 19.3.2, 19.3.4]
Kadomtsev, B.B.: Collective Phenomena in Plasma, p. 238. Nauka, Moscow (in Russian) (1976) [Sect. 7.1]
Kandrup, H.E.: Collisionless relaxation in galactic dynamics and the evolution of long-range order. Ann. New York Acad. Sci. 848, 28–47 (1998) [Sect. 3.3.2]
Kikuchi, H.: Electrohydrodynamics in Dusty and Dirty Plasmas, p. 207. Kluwer Academic, Dordrecht (2001) [Sect. 1.2.4]
Kirkwood, J.G.: The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180–201 (1946) [Sect. 2.4]
Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1995) [Sects. 1.4, 3.5]
Kivelson, M.G., Russell, C.T. (eds.): Introduction to Space Physics, p. 568. Cambridge University Press, Cambridge (1995) [Sects. 4.1.1, 6.2.4]
Kleeorin, N., Rogachevskii, I., Sokoloff, D., et al.: Mean-field dynamos in random Arnold-Beltrami-Childress and Roberts flows. Phys. Rev. E 79(4), 046302 (2009) [Sect. 13.1.2]
Klimontovich, Yu.L.: Kinetic Theory of Non-ideal Gas and Non-ideal Plasma, p. 352. Nauka, Moscow (in Russian) (1975) [Sect. 2.4]
Klimontovich, Yu.L.: Statistical Physics. Harwood Academic, New York (1986) [Intr., Sects. 2.4, 3.1.3, 3.1.4]
Klimontovich, Yu.L.: Two alternative approaches in the kinetic theory of a fully ionized plasma. J. Plasma Phys. 59(4), 647–656 (1998) [Sect. 3.1.3]
Klimontovich, Yu.L., Silin, V.P.: On magnetic hydrodynamics for a non-isothermal plasma without collisions. Sov. Phys. JETP 40, 1213–1223 (1961) [Sects. 11.5.1, 16.4]
Kogan, M.N.: Dynamics of a Dilute Gas. Nauka, Moscow (in Russian) (1967) [Sect. 3.5]
Koide, S., Shibata, K., Kudoh, T.: Relativistic jet formation from black hole magnetized accretion discs. Astrophys. J. 522, 727–752 (1999) [Sects. 12.2, 13.3.1]
Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. USSR, 30, 201–206 (1941) [Sect. 7.2]
Korchak, A.A.: On the origin of solar flare X-rays. Solar Phys. 18(2), 284–304 (1971) [Sect. 8.1.5]
Korchak, A.A.: Coulomb losses and the nuclear composition of the solar flare accelerated particles. Solar Phys. 66(1), 149–158 (1980) [Sect. 8.4.1(b)]
Kosugi, T., Matsuzaki, K., Sakao, T., et al.: The Hinode (Solar-B) mission: An overview. Solar Phys. 243(1), 3–17 (2007) [Sect. 8.3.2]
Kotchine, N.E.: Rendiconti del Circolo Matematico di Palermo 50, 305–314 (1926) [Sect. 17.1.1]
Kovalev, V.A., Somov, B.V.: On the acceleration of solar-flare charged particles in a collapsing magnetic trap with an electric potential. Astron. Lett. 28(7), 488–493 (2002) [Sect. 8.1.4]
Kraichnan, R.H.: Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8(7), 1385–1389 (1965) [Sect. 7.2]
Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill Book Co., New York (1973) [Sect. 9.6.2]
Krucker, S., Hudson, H.S., Jeffrey, N.L.S., et al.: High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739(2), 96 (7pp) (2011) [Sect. 8.3.2]
Krymskii, G.F.: A regular mechanism for the acceleration of charged particles on the front of a shock wave. Sov. Phys. Dokl. 22(6), 327–328 (1977) [Sect. 18.2.1]
Kubbinga, H.: A tribute to Boltzmann. Europhysicsnews 37(6), 28–29 (2006) [Sect. 9.6.1]
Kudriavtsev, V.S.: Energetic diffusion of fast ions in equilibrium plasma. Sov. Phys. JETP 7(6), 1075–1079 (1958) [Sect. 4.1.2]
Kulikovskii, A.G., Liubimov, G.A.: On the structure of an inclined MHD shock wave. Appl. Math. Mech. 25(1), 171–179 (1961) [Sect. 17.4.2]
Kumar, N., Kumar, P., Singh, S.: Coronal heating by MHD waves. Astron. Astrophys. 453(2), 1067–1078 (2006) [Sect. 15.2.1]
Kunkel, W.B.: Generalized Ohm’s law for plasma including neutral particles. Phys. Fluids 27(9), 2369–2371 (1984) [Sect. 11.1]
Lahav, O., Terlevich, E., Terlevich, R.J. (eds.): Gravitational Dynamics, p. 270. Cambridge University Press, Cambridge (1996) [Sect. 1.3]
Lancellotti, C., Kiessling, M.: Self-similar gravitational collapse in stellar dynamics. Astrophys. J.549, L93–L96 (2001) [Sect. 3.3.2]
Landau, L.D.: Kinetic equation in the case of Coulomb interaction. Zhur. Exper. Teor. Fiz. 7(1), 203–212 (in Russian) (1937) [Sect. 3.1.3]
Landau, L.D.: On the vibrations of the electron plasma. J. Phys. USSR 10(1), 25–30 (1946) [Sects. 3.1.3, 7.1]
Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, p. 536. Oxford, London (1959a) [Sects. 12.2.2, 12.2.3, 15.6, 16.1.2, 16.2.2, 20.2]
Landau, L.D., Lifshitz, E.M.: Statistical Physics, p. 478. Pergamon Press, London (1959b) [Sects. 1.1.5, 1.4, 3.5, 16.5]
Landau, L.D., Lifshitz, E.M.: Classical Theory of Field, 4th edn., p. 374. Oxford, New York (1975) [Sects. 1.2.1, 2.2.1, 5.1.1, 5.1.3, 5.4, 6.2.1, 7.4, 13.4, 18.4, 19.1.1]
Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn., p. 165. Oxford, London (1976) [Sects. 1.1.5, 1.4, 6.1, 8.1.1, 19.1.1]
Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, p. 460. Pergamon Press, Oxford (1984) [Sects. 11.4.2, 16.2.4(c), 17.3.2]
Langmuir, I.: Proc. Nat. Acad. Sci. U.S.A. 14, 627 (1928) [Sect. 3.2.2]
Larrabee, D.A., Lovelace, R.V.E., Romanova, M.M.: Lepton acceleration by relativistic collisionless magnetic reconnection. Astrophys. J. 586(1), 72–78 (2003) [Sect. 7.3]
Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Complex Variable Functions, p. 736. Nauka, Moscow (in Russian) (1973) [Sects. 3.1.3, 9.7.1, 14.2.2(a)]
Lax, P.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10(4), 537–566 (1957) [Sect. 17.1.1]
Lax, P.: Hyperbolic Partial Differential Equations, AMS, Courant Inst. of Math. Sci. (2006) [Sect. 17.1.1]
Leenov, D., Kolin, A.: Theory of electromagnetophoresis. 1. MHD forces experienced by spherical and cylindrical particles. J. Chem. Phys. 22(4), 683–688 (1954) [Sect. 20.4]
Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10(7), 1409–1416 (1967) [Sect. 7.2]
Leontovich, M.A. (ed.): Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vols. 1–4. Pergamon Press, London (1960) [Intr.]
Lesch, H., Pohl, M.: A possible explanation for intraday variability in active galactic nuclei. Astron. Astrophys. 254(1), 29–38 (1992) [Sect. 13.2.4]
Letessier, J., Rafelski, J.: Hadrons and Quark-gluon Plasma, p. 397. Cambridge University Press, Cambridge (2004) [Sect. 12.2.5]
Liberman, M.A.: On actuating shock waves in a completely ionized plasma. Sov. Phys. JETP 48(5), 832–840 (1978) [Sects. 16.2.6, 17.4.2]
Liboff, R.: Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, p. 571. Springer, Heidelberg (2003) [Intr.]
Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics, p. 196. Benjamin, New York (1967) [Sect. 12.2]
Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics, p. 452. Pergamon Press, Oxford (1981) [Sects. 3.5, 7.3, 8.3.1, 9.6]
Lin, R.P., Hudson, H.S.: 10–100 keV electron acceleration and emission from solar flares. Solar Phys. 17(2), 412–435 (1971) [Sects. 4.3.4, 8.3.2]
Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210(1), 3–32 (2002) [Sect. 4.5.7]
Lin, R.P., Krucker, S., Hurford, G.J., et al.: RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. 595(2), L69–L76 (2003) [Sect. 4.5.7]
Litvinenko, Y.E., Somov, B.V.: Solar flares and virial theorem. Sov. Astron. AJ 35(2), 183–188 (1991a) [Sects. 19.1.3, 19.2.2, 19.4.3]
Litvinenko, Y.E., Somov, B.V.: Nonthermal electrons in the thick-target reverse-current model for hard X-ray bremsstrahlung. Solar Phys. 131(2), 319–336 (1991b) [Sects. 4.5.2, 4.5.5]
Litvinenko, Y.E., Somov, B.V.: Electromagnetic expulsion force in cosmic plasma. Astron. Astrophys. 287(1), L37–L40 (1994) [Sect. 20.4]
Litvinenko, Y.E., Somov, B.V.: Aspects of the global MHD equilibria and filament eruptions in the solar corona. Space Sci. Rev. 95(1), 67–77 (2001) [Sects. 19.1.3, 19.4.3]
Liubarskii, G.Ya., Polovin, R.V.: Simple magnetoacoustic waves. Sov. Phys. JETP 8(2), 351 (1958) [Sect. 16.2.4(c)]
Lovelace, R.V.E.: Dynamo model of double radio sources. Nature 262, 649–652 (1976) [Sect. 20.1.3]
Luna, M., Karpen, J.T., DeVore, C.R.: Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746(1), article id. 30 (2012) [Sect. 12.1.3]
Lundquist, S.: Magneto-hydrostatic fields. Ark. Fys. 2(35), 361–365 (1951) [Sect. 19.2.1(b)]
Macdonald, D.A., Thorne, K.S., Price, R.H., et al.: Astrophysical applications of black-hole electrodynamics. In: Thorne, K.S., Price, R.H., Macdonald, D.A. (eds.) Black Holes: The Membrane Paradigm, pp. 121–137. Yale University Press, New Haven (1986) [Sect. 13.3.1]
MacDonald, W.M., Rothenbluth, M.N., Chuck, W.: Relaxation of a system of particles with Coulomb interactions. Phys. Rev. 107(2), 350–353 (1957) [Sect. 4.1.2]
Mach, E.: Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Calve, Prag (1872) [Sect. 13.3.2]
Mach, E.: Die Mechanik in ihrer Entwicklung. Historisch-kritisch Dargestellt. Brockhaus, Leipzig (1883) [Sect. 13.3.2]
MacNeice, P., McWhirter, R.W.P., Spicer, D.S., et al.: A numerical model of a solar flare based on electron beam heating of the chromosphere. Solar Phys. 90(2), 357–353 (1984) [Sect. 8.3.2]
Manmoto, T.: Advection-dominated accretion flow around a Kerr black hole. Astrophys. J. 534(2), 734–746 (2000) [Sects. 8.3.5, 13.2.3]
Markovskii, S.A.: Nonevolutionarity of trans-Alfvénic shocks in a magnetized plasma. J. Geophys. Res. 104(A3), 4427–4436 (1999) [Sects. 17.3.2, 17.4.2]
Markovskii, S.A., Skorokhodov, S.L.: Disintegration of trans-Alfvénic shocks due to variable viscosity and resistivity. J. Geophys. Res. 105(A6), 12702–12711 (2000) [Sect. 17.4.2]
Markovskii, S.A., Somov, B.V.: A model of magnetic reconnection in a current sheet with shock waves. Fizika Solnechnoi Plasmy (Physics of Solar Plasma), pp. 456–472. Nauka, Moscow (in Russian) (1989) [Sect. 14.2.2(a)]
Markovskii, S.A., Somov, B.V.: MHD discontinuities in space plasmas: Interrelation between stability and structure. Space Sci. Rev. 78(3–4), 443–506 (1996) [Sect. 17.5]
Marty, P., Alemany, A.: Écoulement dû à des champs magnétique et électrique croisés autour d’un cylindre de conductivité quelconque. Journal de Mécanique Théorique et Appliquée 2(2), 227–243 (1983) [Sects. 19.4.2, 20.3]
Maxwell, J.C.: Illustrations of the dynamical theory of gases. Phil. Mag. Ser. 4(19), 19–24 (1860) [Sect. 9.6.1]
McClymont, A.N., Canfield, R.C.: Flare loop radiative hydrodynamics. I – Basic methods. Astrophys. J. 265, 483–506 (1983) [Sect. 8.3.2]
McDonald, L., Harra-Murnion, L.K., Culhane, J.L.: Non-thermal electron energy deposition in the chromosphere and the accompanying soft X-ray flare emission. Solar Phys. 185(2), 323–350 (1999) [Sect. 8.3.2]
Michel, F.C.: Theory of Neutron Star Magnetospheres, p. 456. Chicago University Press, Chicago (1991) [Sects. 7.3, 11.5.2, 12.2.2]
Mikhailovskii, A.B.: Nonlinear excitation of electromagnetic waves in a relativistic electron-positron plasma. Sov. J. Plasma Phys. 6(3), 336–340 (1979) [Sect. 7.3]
Mikhailovskii, A.B., Onishchenko, O.G., Tatarinov, E.G.: Alfvén solitons in a relativistic electron-positron plasma. Plasma Phys. Contr. Fusion 27(5), 539–556 (1985) [Sect. 7.3]
Mirabel, I.F., Rodriguez, L.F.: Microquasars in our Galaxy. Nature 392, 673–676 (1998) [Sect. 20.1.3]
Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids, p. 343. Cambridge University Press, London (1978) [Sect. 13.1.2]
Moreau, R.: Magnetohydrodynamics, p. 328. Kluwer Academic, Dordrecht (1990) [Sect. 20.1.5]
Morozov, A.I., Solov’ev, L.S.: The structure of magnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 1–101. Consultans Bureau, New York (1966a) [Sect. 19.3.4]
Morozov, A.I., Solov’ev, L.S.: Motion of particles in electromagnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 201–297. Consultans Bureau, New York (1966b) [Sect. 5.3.4]
Moses, G.A., Duderstadt, J.J.: Improved treatment of electron thermal conduction in plasma hydrodynamics calculations. Phys. Fluids 20(5), 762–770 (1977) [Sect. 9.7.1]
Nakano, T.: Star formation in magnetic clouds. Astrophys. J. 494(2), 587–604 (1998) [Sect. 19.1.3]
Narayan, R., Garcia, M.R., McClintock, J.E.: Advection-dominated accretion and black hole horizons. Astrophys. J.478(2), L79–L82 (1997) [Sect. 8.3.5]
Negoro, H., Kitamoto, S., Takeuchi, M., et al.: Statistics of X-ray fluctuations from Cygnus X-1: Reservoirs in the disk? Astrophys. J. 452(1), L49–L52 (1995) [Sect. 13.2.4]
Nishida, A.: Can random reconnection on the magnetopause produce the low latitude boundary layer? Geophys. Res. Lett. 16, 227–230 (1989) [Sect. 12.4.2]
Nishikawa, K.I., Frank, J., Christodoulou, D.M., et al.: 3D relativistic MHD simulations of extragalactic jets. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 217–218. Kluwer Academic, Dordrecht (1999) [Sect. 13.3.1]
Northrop, T.G.: The Adiabatic Motion of Charged Particles. Wiley, New York (1963) [Sect. 6.4]
Novikov, I.D., Frolov, V.P.: Physics of Black Holes, p. 341. Kluwer Academic, Dordrecht (1989) [Sects. 11.5.2, 12.2.2, 13.3.1]
Novikov, I.D., Thorne, K.S.: In: Dewitt, C.D., Dewitt, B. (eds.) Black Holes, pp. 345–354. Gordon and Breach, New York (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]
Obertz, P.: Two-dimensional problem of the shape of the magnetosphere. Geomagn. Aeron. 13(5), 758–766 (1973) [Sect. 14.2.2(a)]
Ogawara, Y., Takano, T., Kato, T., et al.: The Solar-A mission: An overview. Solar Phys. 136(1), 1–16 (1991) [Sect. 8.3.2]
Oreshina, A.V., Somov, B.V.: Analytical description of charged particle motion in a reconnecting current layer Astron. Lett. 35(3), 195–206 (2009) [Sect. 5.2.3]
Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Classical and anomalous heat conduction. Moscow Univ. Phys. Bull. 66(3), 286–291 (2011a) [Sects. 9.6.2, 9.7.3]
Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Account of heat-flux relaxation. Moscow Univ. Phys. Bull. 66(3), 292–297 (2011b) [Sects. 9.6.2, 9.7.3]
Oreshina, I.V., Somov, B.V.: Conformal mapping for solving problems of space electrodynamics. Bull. Russ. Acad. Sci. Phys. 63(8), 1209–1212 (1999) [Sect. 14.5]
Ostriker, E.C.: Dynamical friction in a gaseous medium. Astrophys. J. 513(1), 252–258 (1999) [Sect. 8.5]
Padmanabhan, T.: An Invitation to Astrophysics. World Scientific Publ. Co., New Jersey (2006) [Sect. 14.4.2]
Palmer, P.L.: Stability of Collisionless Stellar Systems, p. 349. Kluwer Academic, Dordrecht (1994) [Sect. 9.8]
Parker, E.N.: Cosmic Magnetic Fields. Their Origin and Their Activity, p. 841. Clarendon Press, Oxford (1979) [Sects. 13.1.2, 19.3.4, 19.4.2, 20.1.5]
Parks, G.K.: Physics of Space Plasmas, An Introduction, 2nd edn., p. 597. Westview Press, Oxford (2004) [Intr., Sects. 14.5, 18.1, 18.2.3]
Peacock, J.A.: Cosmological Physics, p. 682. Cambridge University Press, Cambridge (1999) [Sects. 7.3, 9.8]
Persson, H.: Electric field along a magnetic line of force in a low-density plasma. Phys. Fluids 6(12), 1756–1759 (1963) [Sect. 8.1.4]
Peterson, L.E., Winckler, J.B.: Gamma-ray burst from a solar flare. J. Geophys. Res. 64(7), 697–707 (1959) [Sect. 4.3.4]
Pfaffelmoser, K.: Global classic solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Equat. 95, 281–303 (1992) [Sect. 16.5]
Phan, T.D., Gosling, J.T., Davis, M.S., et al.: A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439(04393), 175–178 (2006) [Sect. 12.4.2]
Planck, M.: Über einen Satz der Statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzber Preuss. Akad. Wiss., Phys-Math. Klasse 324 (1917) [Sect. 3.1.4]
Polovin, R.V.: Shock waves in MHD. Soviet Phys. Usp. 3(5), 677–688 (1961) [Sects. 16.2.4(c), 17.2.2]
Polovin, R.V., Demutskii, V.P.: Fundamentals of Magnetohydrodynamics. Consultants Bureau, New York (1990) [Sect. 17.4.1]
Polovin, R.V., Liubarskii, G.Ya.: Impossibility of rarefaction shock waves in MHD. Sov. Phys. JETP 8(2), 351–352 (1958) [Sect. 16.2.4(c)]
Priest, E.R.: Solar Magnetohydrodynamics, p. 472. D. Reidel Publ. Co., Dordrecht (1982) [Sects. 16.2.4(c), 19.3.4]
Punsly, B.: Black Hole Gravitohydromagnetics, p. 400. Springer, New York (2001) [Sect. 12.2.5]
Quarati, P., Scarfone, A.M.: Modified Debye-Hückel electron shielding and penetration factor. Astrophys. J. 666(2), 1303–1310 (2007) [Sect. 8.2.2]
Ramos, J.I., Winowich, N.S.: Magnetohydrodynamic channel flow study. Phys. Fluids 29(4), 992–997 (1986) [Sect. 20.2]
Reid, I.N., Liebert, J., Schmidt, G.D.: Discovery of a magnetic DZ white dwarf with Zeeman-split lines of heavy elements. Astrophys. J. 550(1), L61–L63 (2001) [Sect. 13.2.2]
Rodrigues-Pacheco, J., Sequeiros, J., del Peral, L., et al.: Diffusive-shock-accelerated interplanetary ions at several energies during the solar cycle 21 maximum. Solar Phys. 181(1), 185–200 (1998) [Sect. 18.2.1]
Rogachevskii, I., Kleeorin, N.: Shear-current effect in a turbulent convection with a large-scale shear. Phys. Rev. E 75(4), 046305 (2007) [Sect. 13.1.2]
Roikhvarger, Z.B., Syrovatskii, S.I.: Evolutionarity of MHD discontinuities with allowance for dissipative waves. Sov. Phys. JETP 39(4), 654–656 (1974) [Sects. 17.1.4, 17.3.1, 17.3.2]
Rose, W.K.: Advanced Stellar Astrophysics, p. 494. Cambridge University Press, Cambridge (1998) [Sects. 1.3, 5.4, 7.3, 12.2.2, 13.2.1, 14.4.2]
Rosenbluth, M., Longmire, C.: Stability of plasmas confined by magnetic fields. Ann. Phys. 1(1), 120–140 (1957) [Sects. 19.3.2, 19.3.3]
Ruderman, M.: Matter in superstrong magnetic fields: The surface of a neutron star. Phys. Rev. Lett. 27(19), 1306–1308 (1971) [Sect. 5.4]
Ruderman, M.A., Sutherland, P.G.: Theory of pulsars: Polar gaps, sparks, and coherent radiation. Astrophys. J. 196(1), 51–72 (1975) [Sect. 7.3]
Rüdiger, G., von Rekowski, B.: Differential rotation and meridional flow for fast-rotating solar-type stars. Astrophys. J. 494(2), 691–699 (1998) [Sects. 13.1.2, 20.1.5]
Ruffolo, D.: Transport and acceleration of energetic particles near an oblique shock. Astrophys. J. 515(2), 787–800 (1999) [Sect. 18.2.1]
Salat, A.: Non-linear plasma transport equations for high flow velocity. Plasma Phys. J. 17, 589–607 (1975) [Sect. 9.7.2]
Sarazin, C.L., Kempner, J.C.: Nonthermal bremsstrahlung and hard X-ray emission from clusters of galaxies. Astrophys. J. 533(1), 73–83 (2000) [Sect. 8.3.4]
Sarris, E.T., Van Allen, J.A.: Effects of interplanetary shocks on energetic particles. J. Geophys. Res. 79(28), 4157–4173 (1974) [Sect. 18.3.2(a)]
Schabansky, V.P.: Some processes in the magnetosphere. Space Sci. Rev. 12(3), 299–418 (1971) [Sect. 11.1]
Schiff, L.I.: Possible new experimental test of general relativity theory. Phys. Rev. Lett. 4(5), 215–217 (1960) [Sect. 13.4]
Schlickeiser, R.: Cosmic Ray Astrophysics, p. 519. Springer, New York (2002) [Sect. 5.1.3]
Schlüter, A.: Dynamic des Plasmas. Zeitschrift für Naturforschung 6A(2), 73–78 (1951) [Sect. 11.1]
Schmidt, G.: Physics of High Temperature Plasmas, p. 408. Academic, New York (1979) [Sect. 3.1.2]
Schou, J., Antia, H.M., Basu, S., et al.: Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505(1), 390–417 (1998) [Sect. 20.1.5]
Schram, P.P.J.: Kinetic Theory of Gases and Plasmas, p. 426. Kluwer Academic, Dordrecht (1991) [Intr., Sect. 6.2.2]
Schrijver, C.J., Zwaan, C.: Solar and Stellar Magnetic Activity, p. 400. Cambridge University Press, Cambridge (1999) [Sect. 20.1.5]
Sedov, L.I.: Mechanics of Continuous Medium, vol. 1, p. 536, vol. 2, p. 584. Nauka, Moscow (in Russian) (1973) [Sect. 13.1.1]
Sermulyn’sh, B.A., Somov, B.V.: The problem of reverse current under heating of the solar atmosphere by accelerated electrons. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 90–95. LIYaF, Leningrad (in Russian) (1982) [Sect. 4.5.6]
Sermulyn’sh, B.A., Somov, B.V.: On the influence of reverse current on the chromospheric heating by accelerated electrons. Investig. Sun Red Stars 18, 86–92 (in Russian) (1983) [Sect. 4.5.6]
Shafranov, V.D.: On MHD equilibrium configurations. Sov. Phys. JETP 6, 545–551 (1958) [Sect. 19.5]
Shafranov, V.D.: Plasma equilibrium in a magnetic field. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 103–151. Consultants Bureau, New York (1966) [Sects. 19.2.2, 19.3.2]
Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems, Observational appearance. Astron. Astrophys. 24(2), 337–355 (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]
Sheeley, N.R., Jr., Warren, H.P., Wang, Y.-M.: A streamer ejection with reconnection close to the Sun. Astrophys. J. 671(1), 926–935 (2007) [Sect. 11.5.1]
Shercliff, A.J.: A Textbook of Magnetohydrodynamics, p. 265. Pergamon Press, Oxford (1965) [Sects. 13.1.1, 16.2.4(c), 17.4.2, 20.2.2]
Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasma, p. 518. Addison-Wesley, Reading (1966) [Sects. 1.1.4, 9.4.1, 9.6.2, 11.5.1, 12.2.3]
Shmeleva, O.P., Syrovatskii, S.I.: Distribution of temperature and emission measure in a steadily heated solar atmosphere. Solar Phys. 33(2), 341–362 (1973) [Sect. 8.5]
Shoub, E.C.: Invalidity of local thermodynamic equilibrium for electrons in solar transition region. Astrophys. J. 266(1), 339–369 (1983) [Sect. 8.4.3]
Shoub, E.C.: Failure of the Fokker-Planck approximation to the Boltzmann integral for (1/r) potentials. Phys. Fluids 30(5), 1340–1352 (1987) [Sects. 3.1.4, 3.5]
Shu, F.H.: The Physics of Astrophysics, vol. 2. Gas Dynamics, p. 476. California Univ. Science Books, Mill Valley (1992) [Sects. 6.2.2, 19.3.4]
Silin, V.P.: Introduction to the Kinetic Theory of Gases, p. 332. Nauka, Moscow (in Russian) (1971) [Sects. 3.1.2, 3.5, 6.2.2]
Simon, A.L.: An Introduction to Thermonuclear Research, p. 182. Pergamon Press, London (1959) [Intr.]
Sirotina, E.P., Syrovatskii, S.I.: Structure of low intensity shock waves in MHD. Sov. Phys. JETP 12(3), 521–526 (1960) [Sects. 16.4, 17.3.1]
Sivukhin, D.V.: Motion of charged particles in electromagnetic fields in the drift approximation. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 1–104. Consultants Bureau, New York (1965) [Sects. 5.2.3, 5.3.4]
Sivukhin, D.V.: Coulomb collisions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 93–341. Consultants Bureau, New York (1966) [Sects. 8.3.1, 8.4.1(b), 8.4.3]
Sivukhin, D.V.: A Course of General Physics. Vol. II, Thermodynamics and Molecular Physics, 3rd edn. Nauka, Moscow (in Russian) (1990) [Sect. 9.6.1]
Sivukhin, D.V.: A Course of General Physics. Vol. III, Electricity, 3rd edn. Nauka, Moscow (in Russian) (1996) [Sects. 11.4.2, 19.2.2]
Smirnov, B.M.: Physics of Weakly Ionized Gases: Problems and Solutions, p. 432. Mir Publ., Moscow (1981) [Sect. 3.5]
Smirnov, V.I.: A Course of Higher Mathematics, vol. 2. Pergamon Press, Oxford (1965) [Sects. 1.1.1, 12.3.1, 19.1.2, 19.6]
Smith, E.J., Tsurutani, B.T., Rosenberg, R.L.: Observations of the interplanetary sector structure up to heliographic latitudes of 16 ∘ : Pioneer 11. J. Geophys. Res. 83, 717–724 (1978) [Sect. 12.4.2]
Somov, B.V.: Fast reconnection and transient phenomena with particle acceleration in the solar corona. Bull. Acad. Sci. USSR, Phys. Ser. 45(4), 114–116 (1981) [Sects. 8.3.3, 9.7.2]
Somov, B.V.: Accumulation and release of flare energy. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 6–49. LIYaF, Leningrad (in Russian) (1982) [Sects. 3.1.4, 4.1.2, 4.4]
Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163(1), 210–218 (1986) [Sect. 8.3.3]
Somov, B.V.: Physical Processes in Solar Flares, p. 248. Kluwer Academic, Dordrecht (1992) [Sects. 4.5.6, 8.3.2, 8.4.3, 9.7.3, 19.4.3]
Somov, B.V.: Cosmic Electrodynamics and Solar Physics, p. 288. Moscow State Univ. Publ., Moscow (in Russian) (1993) [Sect. 16.3]
Somov, B.V.: Fundamentals of Cosmic Electrodynamics, p. 364. Kluwer Academic, Dordrecht (1994a) [Sects. 14.2, 16.3]
Somov, B.V.: Features of mass supply and flows related with reconnection in the solar corona. Space Sci. Rev. 70(1), 161–166 (1994b) [Sects. 19.4.1, 20.4]
Somov, B.V.: Plasma Astrophysics, Part II, Reconnection and Flares, p. 504. Springer Science + Business Media, New York (2012) [Intr.]
Somov, B.V., Gritsyk, P.A.: Bremsstrahlung radiation of accelerated electrons in solar flares. Moscow Univ. Phys. Bull. 67(1), 110–116 (2012) [Sect. 4.5.5]
Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485(2), 859–868 (1997) [Sect. 6.2.4]
Somov, B.V., Syrovatskii, S.I.: Plasma motion in an increasing strong dipolar field. Sov. Phys. JETP 34(2), 332–335 (1972a) [Sects. 14.4.1, 14.4.2]
Somov, B.V., Syrovatskii, S.I.: Appearance of a current sheet in a plasma moving in the field of a two-dimensional magnetic dipole. Sov. Phys. JETP 34(5), 992–997 (1972b) [Sect. 14.2.2(a)]
Somov, B.V., Syrovatskii, S.I.: Physical processes in the solar atmosphere associated with flares. Sov. Phys. Usp. 19(10), 813–835 (1976a) [Sects. 8.3.3, 8.3.4, 12.1.3]
Somov, B.V., Syrovatskii, S.I.: Hydrodynamic plasma flows in a strong magnetic field. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasma, Proc. P.N. Lebedev Phys. Inst., vol. 74, pp. 13–71. Consultants Bureau, New York (1976b) [Sects. 12.1.3, 13.1.1, 14.1, 14.2.2(b), 14.4.2]
Somov, B.V., Tindo, I.P.: Polarization of hard X-rays from solar flares. Cosmic Res. 16(5), 555–564 (1978) [Sect. 4.5.5]
Somov, B.V., Titov, V.S.: Magnetic reconnection as a mechanism for heating the coronal loops. Sov. Astron. Lett. 9(1), 26–28 (1983) [Sect. 8.3.3]
Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Gas dynamics of a flare plasma. Bull. Acad. Sci. USSR Phys. Ser. 41(2), 32–43 (1977) [Sect. 8.3.2]
Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Hydrodynamics of an optically transparent plasma with a distributed heating source. In: Basov, N.G. (ed.) Flare Processes in Plasmas, Proc. P.N. Lebedev Phys. Inst., vol. 110, pp. 73–94. Nauka, Moscow (in Russian) (1979) [Sect. 8.3.2]
Somov, B.V., Syrovatskii, S.I., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Heating by accelerated electrons. Solar Phys. 73(1), 145–155 (1981) [Sect. 8.3.2]
Somov, B.V., Sermulina, B.J., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Thermal model. Solar Phys. 81(1), 281–292 (1982) [Sect. 8.3.3]
Somov, B.V., Oreshina, A.V., Oreshina, I.V., et al.: Flares in accretion disk coronae. Adv. Space Res. 32(6), 1087–1096 (2003) [Sects. 14.2.2(a), 14.5]
Somov, B.V., Dzhalilov, N.S., Staude, J.: Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma. Astron. Lett. 33(5), 309–318 (2007) [Sects. 12.1.3, 15.2.1, 15.4.4]
Spicer, D.S, Emslie, A.G.: A new quasi-thermal trap model for solar hard X-ray bursts: An electrostatic trap model. Astrophys. J. 330(2), 997–1007 (1988) [Sect. 8.1.4]
Spitzer, L.: The stability of isolated clusters. Mon. Not. Roy. Astron. Soc. 100(5), 396–413 (1940) [Sect. 8.3.1]
Spitzer, L.: Physics of Fully Ionized Gases, p. 170. Wiley Interscience, New York (1962) [Sects. 8.3.1, 8.4.1(a), 9.6.2, 15.4.1, 15.4.4]
Steinolfson, R.S., Cable, S.: Venus bow shock at unusually large distances from the planet. Geophys. Res. Lett. 20, 755–758 (1993) [Sect. 16.2.5]
Steinolfson, R.S., Hundhausen, A.J.: MHD intermediate shocks in coronal mass ejections. J. Geophys. Res. 95, 6389–6401 (1990) [Sect. 16.2.5]
Stewart, R.W., Grant, H.L.: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. J. Geophys. Res. 67, 3177–3184 (1969) [Sect. 7.2.2]
Stix, T.H.: Waves in Plasmas. American Institue of Physics, New York (1992) [Sect. 10.4]
Störmer, C.: The Polar Aurora. Clarendon Press, Oxford (1955) [Sect. 6.4]
Strittmatter, P.A.: Gravitational collapse in the presence of a magnetic field. Monthly Not. Roy. Astron. Soc. 132(3), 359–378 (1966) [Sects. 19.1.2, 19.1.3]
Strong, K.T., Saba, J.L.R., Haisch, B.M., et al. (eds.): The Many Faces of the Sun, p. 610. Springer, New York (1999) [Sect. 4.3.4]
Subramanian, P., Becker, P.A., Kazanas, D.: Formation of relativistic outflows in shearing black hole accretion coronae. Astrophys. J. 523(1), 203–222 (1999) [Sect. 13.3.4]
Suh, I.S., Mathews, G.J.: Cold ideal equation of state for strongly magnetized neutron star matter: Effects on muon production and pion condensation. Astrophys. J. 546(3), 1126–1136 (2001) [Sect. 19.1.3]
Sutton, G.W., Sherman, A.: Engineering Magnetohydrodynamics, p. 548. McGraw-Hill Book Co., New York (1965) [Sects. 13.1.1, 20.2]
Syrovatskii, S.I.: On the stability of tangential discontinuities in MHD medium. Zhur. Exper. Teor. Fiz. 24(6), 622–630 (in Russian) (1953) [Sects. 16.2.1, 16.2.2]
Syrovatskii, S.I.: Instability of tangential discontinuities in a compressive medium. Zhur. Exper. Teor. Fiz. 27(1), 121–123 (in Russian) (1954) [Sect. 16.2.2]
Syrovatskii, S.I.: Some properties of discontinuity surfaces in MHD. Proc. P.N. Lebedev Phys. Inst. 8, 13–64 (in Russian) (1956) [Sects. 16.2.1, 16.3, 20.1.1]
Syrovatskii, S.I.: Magnetohydrodynamics. Uspehi Fiz. Nauk 62(3), 247–303 (in Russian) (1957) [Sects. 12.2.2, 15.4.2, 16.2.4(c), 19.1.3, 20.1.1]
Syrovatskii, S.I.: The stability of shock waves in MHD. Sov. Phys. JETP 8(6), 1024–1028 (1959) [Sects. 17.1.2, 17.1.4]
Syrovatskii, S.I.: Formation of current sheets in a plasma with a frozen-in strong field. Sov. Phys. JETP 33(5), 933–940 (1971) [Sect. 14.2.2(a)]
Syrovatskii, S.I., Chesalin, L.S.: Electromagnetic generation of conductive fluid flows near bodies and expulsive force. Questions of Magnetohydrodynamics, pp. 17–22. Zinatne, Riga (in Russian) (1963) [Sects. 19.4.2, 20.3]
Syrovatskii, S.I., Shmeleva, O.P.: Heating of plasma by high-energy electrons, and the non-thermal X-ray emission in solar flares. Sov. Astron. AJ 16(2), 273–283 (1972) [Sects. 4.3.3, 4.3.4, 8.3.2]
Syrovatskii, S.I., Somov, B.V.: Physical driving forces and models of coronal responses. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics, IAU Symp. vol. 91, pp. 425–441. Reidel, Dordrecht (1980) [Sect. 14.2.2(b)]
Takahara, F., Kusunose, M.: Electron-positron pair production in a hot accretion plasma around a massive black hole. Progr. Theor. Phys. 73(6), 1390–1400 (1985) [Sect. 7.3]
Takizawa, M.: A two-temperature model of the intracluster medium. Astrophys. J. 509(2), 579–584 (1998) [Sect. 8.3.4]
Tamm, I.E.: Basic Theory of Electricity, 10th edn., p. 504. Nauka, Moscow (in Russian) (1989) [Sect. 19.3.1]
Tandberg-Hanssen, E.: The Nature of Solar Prominences, p. 308. Kluwer Academic, Dordrecht (1995) [Sects. 19.3.4, 20.4]
Thorne, K.: Gravitomagnetism, Jets in Quasars, and the Stanford Gyroscope Experiment. In: Fairbank, J.D., et al. (eds.) Near Zero: New Frontiers of Physics, pp. 573–586. W.H. Freeman and Co., New York (1988) [Sect. 13.3.2]
Tidman, D.A., Krall, N.A.: Shock Waves in Collisionless Plasma, p. 175. Wiley-Interscience, New York (1971) [Sect. 16.4]
Titov, V.S., Priest, E.R.: The collapse of an X-type neutral point to form a reconnecting current sheet. Geophys. Astrophys. Fluid Dyn. 72, 249–276 (1993) [Sect. 14.2.2(b)]
Todd, L.: Evolution of the trans-Alfvénic normal shock in a gas of finite electrical conductivity. J. Fluid Mech. 18, 321–336 (1964) [Sect. 17.4.2]
Toptyghin, I.N.: Acceleration of particles by shocks in a cosmic plasma. Space Sci. Rev. 26(1), 157–213 (1980) [Sect. 18.3.2(a)]
Treumann, R.A., Baumjohann, W.: Advanced Space Plasma Physics, p. 381. Imperial College Press, London (1997) [Sect. 7.1]
Trubnikov, B.A.: Particle interactions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 105–204. Consultants Bureau, New York (1965) [Sect. 8.4.1(b)]
Tsiklauri, D., Haruki, T.: Magnetic reconnection during collisionless, stressed, X-point collapse using particle-in-cell simulation. Phys. Plasma 14(11), 112905–112905-10 (2007) [Sect. 11.2]
Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al.: The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249(2), 167–196 (2008) [Sect. 8.3.2]
Tverskoy, B.A.: Contribution to the theory of Fermi statistical acceleration. Soviet Phys. JETP. 25(2), 317–325 (1967) [Sect. 7.2]
Tverskoy, B.A.: Theory of turbulent acceleration of charged particles in a plasma. Soviet Phys. JETP.26(4), 821–828 (1968) [Sect. 7.2]
Tverskoy, B.A.: Main mechanisms in the formation of the Earth’s radiation belts. Rev. Geophys. 7(1), 219–231 (1969) [Sect. 6.4]
UeNo, S.: Comparison between statistical features of X-ray fluctuations from the solar corona and accretion disks. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 45–50. Kluwer Academic, Dordrecht (1998) [Sect. 13.2.4]
Unti, T., Atkinson, G.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The boundary. J. Geophys. Res. Space Phys. 73(23), 7319–7327 (1968) [Sect. 14.2.2(a)]
van de Hulst, H.C.: Interstellar polarization and MHD waves. In: Burgers, J.M., van de Hulst, H.C. (eds.) Problems of Cosmical Aerodynamics, pp. 45–57, Central Air Documents Office, Dayton, Ohio (1951) [Sects. 15.2.3, 15.3.2]
van den Oord, G.H.J.: The electrodynamics of beam/return current systems in the solar corona. Astron. Astrophys. 234(2), 496–518 (1990) [Sects. 4.5.1, 4.5.2]
Vink, J., Laming, J.M., Gu, M.F., et al.: The slow temperature equilibration behind the shock front of SN 1006. Astrophys. J. 587(1), L31–L34 (2003) [Sect. 16.4]
Vladimirov, V.S.: Equations of Mathematical Physics, p. 418. M. Dekker, New York (1971) [Sects. 1.1.5, 1.2.2, 13.1.1]
Vlasov, A.A.: On the oscillation properties of an electron gas. Zhur. Eksp. Teor. Fiz. 8(1), 29–33 (in Russian). English translation: 1968, The vibrational properties of an electron gas. Sov. Phys. Uspekhi 10(4), 721–733, see also Sov. Phys. Uspekhi 19(6), 545–546 (1938) [Sects. 3.1.2, 3.1.3, 10.2.2]
Vlasov, A.A.: On the kinetic theory of an ensemble of particles with collective interactions. Soviet J. Phys. 9(1), 25–28 (1945) [Sect. 3.1.2]
Volkov, T.F.: Hydrodynamic description of a collisionless plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 1–21. Consultant Bureau, New York (1966) [Sects. 11.5.1, 16.4]
Walt, M.: Introduction to Geomagnetically Trapped Radiation, p. 188. Cambridge University Press, Cambridge (1994) [Sect. 6.4]
Webb, G.M.: Similarity considerations and conservation laws for magnetostatic atmospheres. Solar Phys.106(2), 287–313 (1986) [Sect. 19.4.3]
Webb, G.M., Zank, G.P., Ko, C.M., et al.: Multi-dimensional Green’s functions and the statistics of diffusive shock acceleration. Astrophys. J. 453(1), 178–189 (1995) [Sect. 18.2.2]
Wentzel, D.G.: Fermi acceleration of charged particles. Astrophys. J. 137(1), 135–146 (1963) [Sect. 18.3.2(b)]
Wentzel, D.G.: Motion across magnetic discontinuities and Fermi acceleration of charged particles. Astrophys. J. 140(3), 1013–1024 (1964) [Sects. 6.2.4, 18.3.2(b)]
Wiita, P.J.: Accretion disks around black holes. In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe, pp. 249–263. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]
Will, C.M.: Finally, results from Gravity Probe B. Physics 4, 43 (2011) [Sect. 13.4]
Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44(6), 489–491 (1958) [Sect. 19.6]
Yvon, J.: La Theorie des Fluids et l’Equation d’Etat. Hermann et Cie, Paris (1935) [Sect. 2.4]
Zank, G.P.: Weyl’s theorem for MHD. J. Plasma Phys. 46(1), 11–14 (1991) [Sect. 16.2.4(c)]
Zel’dovich, Ya.B., Novikov, I.D.: Relativistic Astrophysics. Vol. 1, Stars and Relativity. University of Chicago Press, Chicago (1971) [Sects. 12.2, 19.3.4]
Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 1, p. 464, vol. 2, p. 452. Academic, New York (1966) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]
Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]
Zel’dovich, Ya.B., Ruzmaikin, A.A., Sokolov, D.D.: Magnetic Fields in Astrophysics. Gordon and Breach, New York (1983) [Sect. 13.1.2]
Zenitani, S., Hoshino, M.: The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. 562(1), L63–L66 (2001) [Sect. 7.3]
Zenitani, S., Hoshino, M.: Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670(1), 702–726 (2007) [Sect. 7.3]
Zheleznyakov, V.V.: Radiation in Astrophysical Plasmas, p. 462. Kluwer Academic, Dordrecht (1996) [Sects. 7.1, 7.4, 10.4]
Zhou, Y., Matthaeus, W.H.: Models of inertial range spectra of MHD turbulence. J. Geophys. Res. 95(A9), 14881–14892 (1990) [Sect. 7.2]
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Somov, B.V. (2013). Evolutionarity of MHD Discontinuities. In: Plasma Astrophysics, Part I. Astrophysics and Space Science Library, vol 391. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4283-7_17
Download citation
DOI: https://doi.org/10.1007/978-1-4614-4283-7_17
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-4282-0
Online ISBN: 978-1-4614-4283-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)