Abstract
Magnetic resonance imaging (MRI) has had a substantial clinical impact since the first commercial scanners were introduced in the early 1980s. The ability to image most human tissue and a wide range of pathologies at high-resolution and high anatomic contrast has led to the explosive propagation of MRI scanners worldwide. Anatomic MRI has enabled identification of tumors, lesions, and other pathologies throughout the body and has been particularly effective and suitable for brain imaging due to the predominance of its MR-differentiable soft tissue, lack of motion, and high levels of magnetic field homogeneity relative to the rest of the body.
Similar content being viewed by others
References
Alsop DC et al (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J Alzheimers Dis 20(3):871–880
Bandettini PA (1999) The temporal resolution of functional MRI. In: Moonen C, Bandettini P (eds) Functional MRI. Springer, New York, pp 205–220
Bandettini PA (2012) Sewer pipe, wire, epoxy, and finger tapping: the start of fMRI at the Medical College of Wisconsin. Neuroimage 62(2):620–631
Bandettini P, Wong E (1997) A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed 10(4–5):197–203
Bandettini PA et al (1992) Time course Epi of human brain-function during task activation. Magn Reson Med 25(2):390–397
Bandettini P et al (1994) Spin-echo and gradient-echo Epi of human brain activation using bold contrast – a comparative-study at 1.5 T. NMR Biomed 7(1–2):12–20
Bandettini PA, Petridou N, Bodurka J (2005) Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? Appl Magn Res 29(1):65–88
Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7–8):456–467
Bellgowan P, Saad Z, Bandettini P (2003) Understanding neural system dynamics through task modulation and measurement of functional MRI amplitude, latency, and width. Proc Natl Acad Sci U S A 100(3):1415–1419
Belliveau JW et al (1991) Functional mapping of the human visual-cortex by magnetic-resonance-imaging. Science 254(5032):716–719
Birn RM et al (2008) The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 40(2):644–654
Biswal B et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541
Bode S, Haynes JD (2009) Decoding sequential stages of task preparation in the human brain. Neuroimage 45(2):606–613
Boxerman JL et al (1995) The intravascular contribution to fmri signal change – Monte-Carlo modeling and diffusion-weighted studies in-vivo. Magn Reson Med 34(1):4–10
Boyacioglu R et al (2014) Whole brain, high resolution multiband spin-echo EPI fMRI at 7T: a comparison with gradient-echo EPI using a color-word Stroop task. Neuroimage 97:142–150
Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198
Bulte DP et al (2012) Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 60(1):582–591
Buonocore MH, Maddock RJ (2015) Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Rev Neurosci 26(6):609–632
Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17(1):64–72
Calhoun VD et al (2008) Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp 29(11):1265–1275
Calhoun VD, Eichele T, Pearlson G (2009) Functional brain networks in schizophrenia: a review. Front Hum Neurosci 3:17
Chang C, Cunningham JP, Glover GH (2009) Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage 44(3):857–869
Chen CM et al (2014) GABA level, gamma oscillation, and working memory performance in schizophrenia. Neuroimage Clin 4:531–539
Cheng K (2012) Revealing human ocular dominance columns using high-resolution functional magnetic resonance imaging. Neuroimage 62(2):1029–1034
Choe AS et al (2015) Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years. PLoS ONE 10(10):e0140134
Christopher DeCharms R (2008) Applications of real-time fMRI. Nat Rev Neurosci 9(9):720–729
Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4. doi:10.3389/fnsys.2010.00008
Cordes D et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22(7):1326–1333
Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173
Craddock RC et al (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33(8):1914–1928
Davis TL et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95(4):1834–1839
Deblaere K et al (2002) Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology 44(8):667–673
DeCharms RC et al (2004) Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21(1):436–443
DeCharms RC et al (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 102(51):18626–18631
Detre JA et al (1992) Perfusion imaging. Magn Reson Med 23(1):37–45
Detre JA et al (2009) Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr Opin Neurol 22(4):348–355
Detre JA et al (2012) Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 35(5):1026–1037
Draganski B et al (2004) Changes in grey, matter induced by training. Nature 427(6972):311–312
Du Y et al (2015) A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. Neuroimage 122:272–280
Duyn JH (2012) The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage 62(2):1241–1248
Fan Q et al (2016) MGH-USC human connectome project datasets with ultra-high b-value diffusion MRI. Neuroimage 124:1108–1114
Feinberg DA, Setsompop K (2013) Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 229:90–100
Feinberg DA, Yacoub E (2012) The rapid development of high speed, resolution and precision in fMRI. Neuroimage 62(2):720–725
Finn ES et al (2015) Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci 18(11):1664–1671
Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4. doi:10.3389/fnsys.2010.00019
Fu CHY et al (2008) Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry 63(7):656–662
Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S (2015) Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85(1):11–26
Goense J, Merkle H, Logothetis N (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 76(3):629–639
Gonzalez-Castillo J et al (2012) Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proc Natl Acad Sci U S A 109(14):5487–5492
Gonzalez-Castillo J et al (2015) Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc Natl Acad Sci U S A 112(28):8762–8767
Grafton ST, Tipper CM (2012) Decoding intention: a neuroergonomic perspective. Neuroimage 59(1):14–24
Haacke EM et al (1997) In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp 5(5):341–346
Hall EL et al (2013) The relationship between MEG and fMRI. Neuroimage 102(Pt 1):80–91
Harrison DM et al (2015) Thalamic lesions in multiple sclerosis by 7T MRI: clinical implications and relationship to cortical pathology. Mult Scler 21(9):1139–1150
Haxby JV (2012) Multivariate pattern analysis of fMRI: the early beginnings. Neuroimage 62(2):852–855
Haxby JV et al (2001) Distinct, overlapping representations of faces and multiple categories of objects in ventral temporal cortex. Neuroimage 13(6):S891–S891
Hoge RD (2012) Calibrated fMRI. Neuroimage 62(2):930–937
Hoge RD et al (1999) Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 42(5):849–863
Horikawa T, Kamitani Y (2014) Exploring dream contents by neuroimaging. Brain Nerve 66(4):461–469
Horovitz SG et al (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682
Hutchison RM et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378
Huynh HT, Won Y (2008) Decoding cognitive states from fMRI data using single hidden-layer feed forward neural networks. In: Proceedings – 4th international conference on networked computing and advanced information management, NCM 2008
Jack CR et al (1994) Sensory-motor cortex – correlation of presurgical mapping with functional mr-imaging and invasive cortical mapping. Radiology 190(1):85–92
Jochimsen TH et al (2010) Whole-brain mapping of venous vessel size in humans using the hypercapnia-induced BOLD effect. Neuroimage 51(2):765–774
Johnston SJ et al (2010) Neurofeedback: a promising tool for the self-regulation of emotion networks. Neuroimage 49(1):1066–1072
Kahnt T et al (2010) The neural code of reward anticipation in human orbitofrontal cortex. Proc Natl Acad Sci U S A 107(13):6010–6015
Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8(5):679–685
Kamitani Y, Tong F (2006) Decoding seen and attended motion directions from activity in the human visual cortex. Curr Biol 16(11):1096–1102
Kauppinen RA et al (1993) Applications of magnetic-resonance spectroscopy and diffusion-weighted imaging to the study of brain biochemistry and pathology. Trends Neurosci 16(3):88–95
Kay KN et al (2008) Identifying natural images from human brain activity. Nature 452(7185):352–355
Kim SG (1995) Quantification of relative cerebral blood-flow change by flow-sensitive alternating inversion-recovery (fair) technique – application to functional mapping. Magn Reson Med 34(3):293–301
Kim T, Hendrich K, Kim SG (2008) Functional MRI with magnetization transfer effects: determination of BOLD and arterial blood volume changes. Magn Reson Med 60(6):1518–1523
Kim J et al (2016) Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124:127–146
Kohno S et al (2009) Water-diffusion slowdown in the human visual cortex on visual stimulation precedes vascular responses. J Cereb Blood Flow Metab 29(6):1197–1207
Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci U S A 103(10):3863–3868
Kucyi A, Davis KD (2014) Dynamic functional connectivity of the default mode network tracks daydreaming. Neuroimage 100:471–80
Kundu P et al (2012) Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. Neuroimage 60(3):1759–1770
Kundu P et al (2013) Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proc Natl Acad Sci U S A 110(40):16187–16192
Kwong KK (2012) Record of a single fMRI experiment in May of 1991. Neuroimage 62(2):610–612
Kwong KK et al (1992) Dynamic magnetic-resonance-imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):5675–5679
LaConte SM (2011) Decoding fMRI brain states in real-time. Neuroimage 56(2):440–454
LaConte SM, Peltier SJ, Hu XP (2007) Real-time fMRI using brain-state classification. Hum Brain Mapp 28(10):1033–1044
Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480
Le Bihan D (2012) Diffusion, confusion and functional MRI. Neuroimage 62(2):1131–1136
Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61(2):324–341
Linden DEJ et al (2012) Real-time self-regulation of emotion networks in patients with depression. PLoS ONE 7(6), e38115
Lu H, Ge Y (2008) Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 60(2):357–363
Lu H et al (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50(2):263–274
Maguire EA et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97(8):4398–4403
Mantini D et al (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104(32):13170–13175
McGonigle DJ (2012) Test-retest reliability in fMRI: or how I learned to stop worrying and love the variability. Neuroimage 62(2):1116–1120
Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3(6):207–216
Menon RS, Luknowsky DC, Gati JS (1998) Mental chronometry using latency-resolved functional MRI. Proc Natl Acad Sci U S A 95(18):10902–10907
Misaki M et al (2010) Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage 53(1):103–118
Misaki M, Luh WM, Bandettini PA (2013) Accurate decoding of sub-TR timing differences in stimulations of sub-voxel regions from multi-voxel response patterns. Neuroimage 66:623–633
Mitchell RLC, Ross ED (2008) fMRI evidence for the effect of verbal complexity on lateralisation of the neural response associated with decoding prosodic emotion. Neuropsychologia 46(12):2880–2887
Mitchell TM et al. (2003) Classifying instantaneous cognitive states from FMRI data. AMIA. In: Annual symposium proceedings [electronic resource]/AMIA symposium. AMIA symposium, pp 465–469
Mitchell TM et al (2004) Learning to decode cognitive states from brain images. Mach Learn 57(1–2 Spec. iss):145–175
Mitchell TV et al (2005) Functional magnetic resonance imaging measure of automatic and controlled auditory processing. Neuroreport 16(5):457–461
Moonen CT et al (1990) Functional magnetic resonance imaging in medicine and physiology. Science 250(4977):53–61
Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539
Mourão-Miranda J et al (2005) Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. Neuroimage 28(4):980–995
Murphy K, Birn RM, Bandettini PA (2013) Resting-state fMRI confounds and cleanup. Neuroimage 80:349–359
Naselaris T et al (2011) Encoding and decoding in fMRI. Neuroimage 56(2):400–410
Niazy RK et al (2011) Spectral characteristics of resting state networks. Prog Brain Res 193:259–276
Norman KA et al (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430
Ogawa S, Lee TM (1990) Magnetic-resonance-imaging of blood-vessels at high fields – invivo and invitro measurements and image simulation. Magn Reson Med 16(1):9–18
Ogawa S et al (1990a) Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872
Ogawa S et al (1990b) Oxygenation-sensitive contrast in magnetic-resonance image of rodent brain at high magnetic-fields. Magn Reson Med 14(1):68–78
Ogawa S et al (1992) Intrinsic signal changes accompanying sensory stimulation – functional brain mapping with magnetic-resonance-imaging. Proc Natl Acad Sci U S A 89(13):5951–5955
Ojemann GA, Ramsey NF, Ojemann J (2013) Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex. Front Hum Neurosci 7:34
Posse S et al (2013) MR spectroscopic imaging: principles and recent advances. J Magn Reson Imaging 37(6):1301–1325
Power JD et al (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341
Power JD, Schlaggar BL, Petersen SE (2015) Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105:536–551
Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962
Reddy L, Tsuchiya N, Serre T (2010) Reading the mind's eye: decoding category information during mental imagery. Neuroimage 50(2):818–825
Reichenbach JR (2012) The future of susceptibility contrast for assessment of anatomy and function. Neuroimage 62(2):1311–1315
Richiardi J et al (2011) Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2):616–626
Rigolo L et al (2011) Development of a clinical functional magnetic resonance imaging service. Neurosurg Clin N Am 22(2):307–314
Rosazza C, Minati L (2011) Resting-state brain networks: literature review and clinical applications. Neurol Sci 32(5):773–785
Rosen BR et al (1991) Susceptibility contrast imaging of cerebral blood-volume – human-experience. Magn Reson Med 22(2):293–299
Sarkheil P et al (2015) fMRI feedback enhances emotion regulation as evidenced by a reduced amygdala response. Behav Brain Res 281:326–332
Scholz J et al (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371
Setsompop K et al (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67(5):1210–1224
Shulman RG et al (1993) Nuclear-magnetic-resonance imaging and spectroscopy of human brain-function. Proc Natl Acad Sci U S A 90(8):3127–3133
Smith SM (2012) The future of FMRI connectivity. Neuroimage 62(2):1257–1266
Smith SM et al (2015) A positive–negative mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci 18(11):1565–1567
Sodickson DK (2000) Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 44(2):243–251
Sommer M et al (2008) Decoding of affective facial expressions in the context of emotional situations. Neuropsychologia 46(11):2615–2621
Song AW (2012) Diffusion modulation of the fMRI signal: early investigations on the origin of the BOLD signal. Neuroimage 62(2):949–952
Song AW et al (1996) Diffusion weighted fMRI at 1.5 T. Magn Reson Med 35(2):155–158
Stoeckel LE et al (2014) Optimizing real time fMRI neurofeedback for therapeutic discovery and development. NeuroImage Clin 5:245–255
Sulzer J et al (2013) Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76:386–399
Thulborn KR (2012) My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water. Neuroimage 62(2):589–593
Tong F (2003) Primary visual cortex and visual awareness. Nat Rev Neurosci 4(3):219–229
Tsai YH et al (2014) Disruption of brain connectivity in acute stroke patients with early impairment in consciousness. Front Psychol 4:956
Uǧurbil K (2012) Development of functional imaging in the human brain (fMRI); the University of Minnesota experience. Neuroimage 62(2):613–619
Valkanova V, Eguia Rodriguez R, Ebmeier KP (2014) Mind over matter – What do we know about neuroplasticity in adults? Int Psychogeriatr 26(6):891–909
van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534
Van Essen DC et al (2012) The human connectome project: a data acquisition perspective. Neuroimage 62(4):2222–2231
van Zijl PCM et al (1998) Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 4(2):159–167
Wang J et al (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49(5):796–802
Wang D et al (2015) Parcellating cortical functional networks in individuals. Nat Neurosci 18(12):1853–1860
Weiskopf N et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586
Weiskopf N et al (2004) Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51(6):966–970
Williams DS et al (1992) Magnetic-resonance-imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89(1):212–216
Wong EC (2007) Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 58(6):1086–1091
Wong EC, Buxton RB, Frank LR (1999) Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am 9(2):333–342
Wu WC, Wong EC (2007) Feasibility of velocity selective arterial spin labeling in functional MRI. J Cereb Blood Flow Metab 27(4):831–838
Yablonskiy DA, Ackerman JJH, Raichle ME (2000) Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc Natl Acad Sci U S A 97(13):7603–7608
Yacoub E, Harel N, Uǧurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci U S A 105(30):10607–10612
Yang Y, Gu H, Stein EA (2004) Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation. Magn Reson Med 52(6):1407–1417
Yang Z et al (2014) Using fMRI to decode true thoughts independent of intention to conceal. Neuroimage 99:80–92
Zilverstand A et al. (2015) fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Front Behav Neurosci 9(June). doi:10.3389/fnbeh.2015.00148
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York (outside the USA)
About this entry
Cite this entry
Bandettini, P.A. (2016). Functional Imaging: Magnetic Resonance Imaging. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_150-1
Download citation
DOI: https://doi.org/10.1007/978-1-4614-6434-1_150-1
Received:
Accepted:
Published:
Publisher Name: Springer, New York, NY
Online ISBN: 978-1-4614-6434-1
eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences