Skip to main content

Microbial Alcohol, Aldehyde and Formate Ester Oxidoreductases

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 4

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 328))

  • 252 Accesses

  • 8 Citations

Abstract

Formation of alcohols by natural processes takes place in the fermentative breakdown of sugars and the oxidative dissimilation of alkanes. In view of the wide-spreadness of these processes, it is understandable that many microbial species have the capacity to degrade these compounds. Formaldehyde takes a prominent position among the aldehydes found in Nature. The reason is the frequent occurrance of natural (e.g. methylated amines) as well as man-made C1-compounds (industrial solvents like DMSO and DMF are used at large scale as well as methylated and methoxylated bulk chemicals, leading to contamination of the environment with these compounds) which are degraded via formaldehyde by a variety of C1-compounds-utilizing microbes, the so-called methylotrophs. However, also adventitious formaldehyde formation takes place, e.g. in organisms using methylated amines as a nitrogen source or in organisms using pectins, the degradation process liberating methanol from the esterified groups which can be converted to formaldehyde by alcohol oxidizing enzymes. Since formaldehyde is a toxic compound but the ability to assimilate it is confined to methylotrophs, it is obvious that most micro-organisms have developed an oxidative system to get rid of this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, S.H.G., 1982, Lactate-oxaloacetate transhydrogenase from Veillonella alcalescens, Methods Enzymol. 89: 367.

    Article  PubMed  CAS  Google Scholar 

  • Ameyama, M., and Adachi, O., 1982, Alcohol dehydrogenase from acetic acid bacteria, membrane bound, Methods Enzymol. 89: 450.

    Article  CAS  Google Scholar 

  • Anthony, C., 1992, The structure of bacterial quinoprotein dehydrogenases, Int. J. Biochem. 24: 29.

    Article  PubMed  CAS  Google Scholar 

  • Arfman, N., Van Beeumen, J., De Vries, G.E., Harder, W., and Dijkhuizen, L., 1991, Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp., J. Biol. Chem. 266: 3955.

    PubMed  CAS  Google Scholar 

  • Bystrykh, L.V., Dijkhuizen, L., and Harder, W., 1991, Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha, J. Gen. Microbiol. 137: 2381.

    Article  PubMed  CAS  Google Scholar 

  • Caspritz, G. and Radler, F., 1983, Malolactic enzyme of Lactobacillus plantarum. J. Biol. Chem. 258: 4907.

    PubMed  CAS  Google Scholar 

  • Chalmers, R.M. Keen, J.N., and Fewson, C.A., 1991, Comparison of benzylalcohol dehydrogenase and benzaldehyde dehydrogenases from Acinetobacter calcoaceticus and from Pseudomonas putida, Biochem. J. 273: 99.

    PubMed  CAS  Google Scholar 

  • Cox, R.B., and Quayle, J.R., 1975, The autotrophic growth of Micrococcus denitrificans on methanol, Biochem. J. 150: 569.

    PubMed  CAS  Google Scholar 

  • De Vries, G.E., Arfman, N., Terpstra, P., and Dijkhuizen, L., 1992, Cloning, expression and sequence analysis of the methanol dehydrogenase gene from Bacillus sp. strain C1, J. Bacteriol, 174: 5346.

    PubMed  Google Scholar 

  • Dickinson, F.M., and Wadforth, C., 1992, Purification and some properties of alcohol oxidase from alkane-grown Candida tropicalis, Biochem. J. 282: 325.

    PubMed  CAS  Google Scholar 

  • Duine, J.A., Frank, J., and Berkhout, M.P.J., 1984, NAD-dependent PQQ-containing methanol dehydrogenase: a bacterial dehydrogenase in a multi-enzyme complex, FEBS Lett. 168: 217.

    Article  PubMed  CAS  Google Scholar 

  • Duine, J.A., 1991, Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone (PQQ), topaquinone (TPQ) or tryptophanyl tryptophan quinone (TTQ), Eur. J. Biochem. 200: 271.

    Article  PubMed  CAS  Google Scholar 

  • Duine, J.A., Van Dijken, J.P., 1991, Enzymes of industrial potential in methylotrophs, in: “Biology of Methylotrophs,” J. Goldberg, and J.S. Rokem, eds., Butterworth-Heinemann, Boston, p. 233.

    Google Scholar 

  • Fahey, R.C., and Newton, G.L., 1983, Occurence of low molecular weight thiols in biological systems, in: “Functions of glutathione,“ A. Larsson et al., ed., Raven Press, New York, p. 251.

    Google Scholar 

  • Frey, P.A., 1987, Complex pyridine nucleotide-dependent transformations, in: “Pyridine nucleotide coenzymes,” D. Dolphin et al., ed., John Wiley & Sons, New York.

    Google Scholar 

  • Geerlof, A., Van Tol, J.B.A., Jongejan, J.A., and Duine J.A., 1992, Microbial alcohol/aldehyde oxidoreductases in enantioselective conversion, in: “Microbial Reagents in Organic Synthesis,” S. Servi, ed., Kluwer Acad. Publ., Dordrecht, in press

    Google Scholar 

  • Groeneveld, A., Dijkstra, M. and Duine, J.A, 1984, Cyclopropanol in the exploration of bacterial alcohol oxidation, FEMS Microbiol Lett. 25: 311.

    Article  CAS  Google Scholar 

  • Gutheil, W.G., Holmquist, B., and Vallee, B.L., 1992, Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli, Biochemistry 31: 475.

    Article  PubMed  CAS  Google Scholar 

  • Heim R., and Strehler, E.E., 1991, Cloning an Escherichia coli gene encoding a protein remarkably similar to mammalian aldehyde dehydrogenases, Gene 99: 15.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, T., Sunagawa, M., Mori, A., Imai, C., Fukuda, M, Takagi, M, and Yano, K., 1990, Possible functional domains in a quinoprotein alcohol dehydrogenase from Acetobacter aceti, J. Ferm. Bioeng. 70: 58.

    Article  CAS  Google Scholar 

  • Jörnvall, H., Persson, B., and Jeffery, J., 1987, Characteristics of alcohol/polyol dehydrogenases, Eur. J. Biochem. 167: 195.

    Article  PubMed  Google Scholar 

  • Kato, N., Yamagami, T., Shimao, M., and Sakazawa, C., 1986, Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61, Eur. J. Biochem. 156: 59.

    Article  PubMed  CAS  Google Scholar 

  • Kirkman, H.N., and Gaetani, C.F., 1984, Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH, Proc. Natl. Acad. Sci. 81: 4343.

    Article  PubMed  CAS  Google Scholar 

  • Kok, M., Oldenhuis, R., Van der Linden, M., Meulenberg, C.H.C., Kingma, J., and Witholt, B., 1989, The Pseudomonas oleovorans alk BAC Operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase, J. Biol. Chem., 264: 5442.

    PubMed  CAS  Google Scholar 

  • Koivusalo, M., Baumann, M., and Uotila, L., 1989, Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase, FEBS Lett. 257: 105.

    Article  PubMed  CAS  Google Scholar 

  • Ledeboer, A.M., Edens, L., Maat, J., Visser, G., Bos, J.W., Verrips, C.T., Janowicz, Z., Eckart, M. and Hollenberg, C.P., 1985, Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula potymorpha, Nucleic Acids Res. 13: 3063.

    Article  PubMed  CAS  Google Scholar 

  • Long, A.R., and Anthony, C., 1990, Modifier protein for methanol dehydrogenase of methylotrophs, Methods Enzymol. 188: 216.

    Article  CAS  Google Scholar 

  • Mason, R.P., and Sanders, J.K.M., 1989, In vivo enzymology: a deuterium NMR study of formaldehyde dismutase in Pseudomonas putida F61a and Staphylococcus aureus, Biochemistry 28: 2160.

    Google Scholar 

  • Mukund, S., and Adams, M.W.W., 1991, The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium Pyrococcus furiosis, is an aldehyde ferredoxin oxidoreductase, J. Biol. Chem. 266: 14208.

    PubMed  CAS  Google Scholar 

  • Ogushi, S., Ando, M., and Tsuru, D., 1984, Substrate specificity of formaldehyde dehydrogenase from Pseudomonas putida, Agric. Biol. Chem. 48: 597.

    Article  CAS  Google Scholar 

  • Ogushi, S., Ando, M. and Tsuru, D., 1986, Formaldehyde dehydrogenase from Pseudomonas putida: the role of a cysteinyl residue in the enzyme activity, Agric. Biol. Chem. 50: 2503.

    Article  CAS  Google Scholar 

  • Patel, R.N., Hou, C.T., Derelanko, P., and Felix, A., 1980, Purification and properties of a heme-containig aldehyde dehydrogenase from Methylosinus trichosporium, Archiv. Biochem. Biophys. 203: 654.

    Article  CAS  Google Scholar 

  • Pocker, Y, and Page, J.D., 1990, Zinc-activated alcohols in ternary complexes of liver alcohol dehydrogenase, J. Biol. Chem. 265: 2 2101.

    Google Scholar 

  • Poels, P.A., Groen, B.W., and Duine, J.A., 1987, NAD(P)-independent aldehyde dehydrogenase from Pseudomonas testosteroni, Eur. J. Biochem. 166: 575.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki, T., Fukaya, M., Takemura, H., Tayama, K., Okumura, H., Kawamura, Y., Nishiyama, M., Horinouchi, S., and Beppu, T., 1991, Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes, Biochim. Biophys. Acta 1088: 292.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki, T., Horinouchi, S., Fukaya, M., Okumura, H., Kawamura, Y., and Beppu, T., 1989, Nucleotide sequence of the membrane-bound aldehyde dehydrogenase gene from Acetobacter polyoxogenes, J. Biochem. 106: 541.

    PubMed  CAS  Google Scholar 

  • Turner, N., Barata, B., Bray, R.C., Deistung, J., Le Gall, J., and Moura, J.J.G., 1987, The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase, Biochem. J. 243: 755.

    PubMed  CAS  Google Scholar 

  • Van Ophem, P.W., Euverink, G.J., Dijkhuizen, L. and Duine, J.A., 1991, A novel dye-linked alcohol dehydrogenase present in some Gram-positive bacteria, FEMS Microbiol. Lett. 80: 57.

    Article  Google Scholar 

  • Van Ophem, P.W., Bystrykh, L.V., and Duine, J.A., 1992a, Dye-linked dehydrogenase activities for formate and formate esters in Amycolatopsis methanolica, Eur. J. Biochem. 206: 519.

    Article  PubMed  Google Scholar 

  • Van Ophem, P.W., Van Beeumen, J., and Duine, J.A., 1992b, NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica, Eur. J. Biochem. 206: 511.

    Article  PubMed  Google Scholar 

  • White, H., Strobl, G., Feicht, R., and Simon, H., 1989, Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes, Eur. J. Biochem. 184: 89.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, J.R., 1990, in: “Autotrophic Microbiology and one-carbon metabolism”, Vol I, G.A Codd, L. Dijkhuizen, and F.R. Tabita, eds., Kluwer Ac. Publ., Dordrecht, p. 193.

    Book  Google Scholar 

  • Zachariou, M., Scopes, R.K., 1986, Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production, J. Bacteriol. 167: 863.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Ophem, P.W., Duine, J.A. (1993). Microbial Alcohol, Aldehyde and Formate Ester Oxidoreductases. In: Weiner, H., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 4. Advances in Experimental Medicine and Biology, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2904-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2904-0_63

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6259-3

  • Online ISBN: 978-1-4615-2904-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics