Skip to main content

Nonpolynomial String Field Theory

  • Chapter
Strings, Conformal Fields, and Topology

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 736 Accesses

Abstract

String field theory, so far, has been relatively clean and simple. For example, the light cone string field theory for closed strings [1] was purely cubic, yet it successfully reproduced the highly nonlinear theory of Einstein. The covariant version of the open string field theory [2] was even simpler, being just a Chern-Simons term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kaku and K. Kikkawa, Phys. Rev. D10, 1110, 1823 (1974).

    Google Scholar 

  2. E. Witten, Nucl. Phys. B268, 253 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Lykken and S. Raby, Nucl. Phys. B278, 256 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Strominger, Phys. Rev. Lett. 58, 629 (1987); Nucl. Phys. B294, 93 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Kaku in Functional Integration, Geometry, and Strings, 25th Karpacz Winter School, Feb. 20–Mar. 5, 1989, Z. Haba and J. Sobcyk, eds., Birkhaeuser, Basel (1989).

    Google Scholar 

  6. M. Kaku, Phys. Rev. D41, 3734 (1990); Osaka preprint OU-HET 121 (1989).

    MathSciNet  ADS  Google Scholar 

  7. T. Kugo, H. Kunitomo, and K. Suehiro, Phys. Lett. 226B, 48 (1989); T. Kugo and K. Suehiro, KUNS 988 HE(TH) 89/08 (1989); M. Saadi and B. Zwiebach, Ann. Phys. 192, 213 (1989).

    MathSciNet  ADS  Google Scholar 

  8. M. A. Virasoro, Phys. Rev. 177, 2309 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Shapiro, Phys. Lett. 33B, 361 (1970).

    ADS  Google Scholar 

  10. M. Kaku and J. Lykken, Phys. Rev. D38, 3067 (1988); [The missing region was first conjectured in: S. Giddings and E. Martinec, Nucl. Phys. B278, 256 (1986).]

    MathSciNet  ADS  Google Scholar 

  11. M. Kaku, Phys. Rev. D38, 3052 (1988).

    MathSciNet  ADS  Google Scholar 

  12. D. Mumford, Tata Lectures on Theta, Birkhaeuser, Basel (1983).

    MATH  Google Scholar 

  13. J. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin and New York (1973).

    Google Scholar 

  14. L. Alvarez-Gaumé, G. Moore, and C. Vafa, Comm. Math. Phys. 106, 1 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. E. Verlinde and H. Verlinde, Nucl. Phys. B288, 357 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Samuel, CCNY preprint (1989).

    Google Scholar 

  17. L. Hua and M. Kaku, Phys. Rev. D41, 3748 (1987).

    MathSciNet  ADS  Google Scholar 

  18. L. Hua and M. Kaku, Phys. Lett. 250B, 56 (1990).

    MathSciNet  ADS  Google Scholar 

  19. G. Zemba and B. Zwiebach, J. Math. Phys. 30, 2388 (1989); H. Sonoda and B. Zwiebach, Nucl. Phys. B331, 592 (1990); B. Zwiebach, Phys. Lett. 241B 343, (1990); B. Zwiebach, MIT-CTP 1909, 1910, 1911, 1912.

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Saadi, Mod. Phys. Lett. A5, 551 (1990).

    MathSciNet  ADS  Google Scholar 

  21. M. Kaku, Phys. Lett. 250B, 64 (1990).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kaku, M. (1991). Nonpolynomial String Field Theory. In: Strings, Conformal Fields, and Topology. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0397-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0397-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0399-2

  • Online ISBN: 978-1-4684-0397-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics