Abstract
Inflammatory processes and infectious diseases induce a constellation of host responses referred to as acute phase response (1,2). These responses include changes in immunologic, metabolic, neurologic, and endocrinologic functions. Although many of its components are far from being understood, it is generally believed that the acute phase response serves to regain normal homeostasis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dinarello, C.A., Interleukin–1 and the pathogenesis of the acute phase response, New Eng J Med 311: 1413–1418, 1984.
Frayn, K.N. Hormonal control of metabolism in trauma and sepsis,Clin Endocrinol 24: 577–599, 1986.
Oppenheim, J .J., E.J. Kovács, K. Matsushima, and S.K. Durum, There is more than one interleukin–1, Immunol Today 7: 45–56, 1986.
Lomedico, P.T., U. Gubler, C.P. Hellman, M. Dukovich, J.C. Giri, Y.C.E. Pan, K. Collier, R. Semionow, A.O. Chua, and S.B. Mizel, Cloning and expression of murine interleukin–1 cDNA in Eschericia Coli, Nature 312: 458–462, 1984.
March, C.J., B. Mosley, A. Larsen, D.P. Ceretti, G. Breadt, V. Price, S. Gillis, C.S. Henney, S.R. Knonheim, K. Grabstein, P.J. Conlon, T.P. Hopp, and D. Kosman, Cloning, sequence and expression of two distinct human interleukin–1 complementary DNAs, Nature 315: 641–647, 1985.
Nishida, T., N. Nishino, K. Mizuno, Y. Sekiguch, M. Takano, K. Kawai, S. Nakai, and Y. Hirai, Cloning of the Cdnas for rat interleukin–1 alpha and beta, In Monokines and Other Non–Lymphocytic Cytokines ,A.R. Liss, New York, pp.73–78, 1988.
Bird, T.A., and J. Saklatvala, Identification of a common class of high affinity receptors for both types of porcine interleukin–1 on connective tissue cells, Nature 324: 263–266, 1986.
Dower, S.K., S.M. Call, S. Gillis, and D.L. Urdal, Similarity between the interleukin–1 receptor on a murine T–lymphoma cell line and on a murine fibroblast cell line, Proc Natl Acad Sci USA 83:1060–1064, 1986.
Dower, S.K., S.R. Krohnheim, T.P. Hopp, M. Cantrell, M. Deeley, S. Gillis, C.S. Henney, and D.L. Urdal, The cell surface receptors for interleukin–land interleukin–1are identical, Nature 324: 266–268, 1986.
Kilian, P.L., K.L. Kaffka, A.S. Stein, D. Woehle, W.R. Benjamin, T.M. Decheria, U. Gabler, J .J. Farrar, S.B. Mizel, and P.T. Lomedico, Interleukin–1 alpha and interleukin–1 beta bind to the same receptor on T–cells, J Immunol 136: 4509–4514, 1986.
Sims, J.E., C.J. March, D. Cosman, M.B. Widmer, R.H. MacDonald, C.J. McMahan, C.E. Grubin, J.M. Wignall, J.L. Jackson, S.M. Call, D. Frien, A.R. Alpert, S. Gillis, D.L. Urdal, and S.K. Dower, cDNA expression cloning of the interleukin–1 receptor, a member of the immunoglobulin superfamily, Science 241: 585–589, 1988.
Dinarello, C.A., Biology of interleukin–1, FASEB 2: 108–115, 1988.
Fontana, A., F. Kristensen, R. Dubi, D. Gemsa, and E. Weber, Production of prostaglandin E and an interleukin–1 like factor by cultured astrocytes and C6 glioma cells, J Immunol 129: 2413–2419, 1982.
Fontana, A., E. Weber, and J.M. Dayer, Synthesis of interleukin–1/endogenous pyrogen in the brain of endotoxin–related mice: a step in fever induction, J Immunol 133: 1696–1698, 1984.
Giulian, D., T.J. Baker, L–C.N. Shih, and L.B. Lachman, Interleukin–1 of the central nervous system is produced by ameloid microglia, J Exp Med 164: 594–604, 1986.
Besedovsky, H., A Del Rey, E. Sorkin, and C.A. Dinarello, Immunoregulatory feedback between interleukin–1 and glucocorticoid hormones, Science 233: 652–654, 1986.
Urquhart, J., Physiological actions of adrenocorticotropic hormone, In S.R. Geiger (ed) Handbook of Physiology, Endocrinology ,American Physiological Society, Washington, D.C., pp. 133, 1974.
DeWied, D., Pituitary–adrenal system hormones and behaviour, In F.O. Schmitt and F.G. Worden (eds) The Neurosciences ,MIT Press, Cambridge, pp. 653, 1974.
Munck, A., P.M. Guyre, and N.J. Holbrook, Physiological functions of glucocorticoids in stress and their relation to pharmacological actions, Endocrine Rev 5: 25–44, 1984.
Bateman,A., A. Singh, T. Kral, and S. Solomon, The immune–hypothalamic pituitary–adrenal axis, Endocrine Rev 10: 92–112, 1989.
Beisel, W.R. and M.I. Rapoport, Interrelations between adrenocortical functions and infectious illness, N Engl J Med 280: 541–546, 1969.
Smith, E.M., W.J. Meyer, and J.E. Blalock, Virus induced corticosterone in hypophysectomized mice: a possible lymphoid–adrenal axis, Science 218: 1311–1312, 1982.
Nakano, K., S. Suzuki, and C. Oh, Significance of increased secretion of glucocorticoids in mice and rats injected with bacterial endotoxin, Brain Behav Immun 1: 159–172, 1987.
Wolf, S.M., Biological effects of bacterial endotoxin in man, J Infect Dis 128: S259–S264, 1974.
Lachman, L.B., Interleukin–1 release from LPS–stimulated mononuclear phagocytes, In A. Nowotny (ed) Beneficial Effect of Endotoxin ,Plenum Press, New York, pp. 283, 1983.
Okusawa, S., C.A. Dinarello, K.B. Yancey, S. Endies, T.J. Lawley, M.M Frank, J.F. Burke, and JA. Gelfand, G5a induction of human interleukin–1: synergistic effects with endotoxin or interferon–gamma, J Immunol 139: 2635–2640, 1987.
Dunn, A. J., and M.L. Powell, Virus–induced increases in plasma corticosterone, Science 238:1423–1424, 1987.
Berkenbosch, F., A. Del Rey, J.W.A. Van Oers, F.J.H. Tilders, and H. Besedovsky, Feedback circuit involving the immuno–hormone interleukin–1 and the pituitary–adrenal system, In R. Kvetnansky and G. Van Loon (eds) Catecholamines and Other Neurotransmitters in Stress ,Gordon and Breach, New York, In Press, 1989.
Besedovsky, H.O., E. Sorkin, M. Keller, and J. Muller, Changes in blood hormone levels during the immune response, Proc Soc Exp Med 150: 466–470, 1975.
Besedovsky, H., A. Del Rey, E. Sorkin, W. Lotz, and U. Schuwela, Lymphoid cells produce an immunoregulatory glucocorticoid increasing factor (GIF) acting through the pituitary gland, Clin Exp Immunol 59: 622–628, 1985.
Harbour–McMenemamin, D., E.M. Smith, and J.E. Blalock, Bacteria lipopolysaccharide induction of leukocyte–derived corticotropin and endorphins, Infect Immunol 48: 813–817, 1985.
Smith, E. K., and E.J. Blalock, Human lymphocyte production of corticotropin and endorphin like substances: association with leukocyte interferon, Proc Natl Acad Sci USA 78: 7530–7534, 1981.
Kavelaars, A., R.E. Ballieux, and C.J. Heijnen, The role of IL–1 in the corticotropin releasing factor and arginine–vasopressin induced secretion of immunoreactive beta–endorphin by human peripheral blood mononuclear cells, J Immunol ,In Press, 1989.
Besedovsky, H., and A. Del Rey, Neuroendocrine and metabolic responses induced by interleukin–1, J Neurosci Res 18: 172–178, 1987.
Bendtzen, K., T. Mandrup–Poulson, J. Nerup, J.H. Nielsen, C.A. Dinarello, and M. Svenson, Cytoxicity of human pI 7 interleukin–1 for pancreatic islets of langerhans, Science 232: 1545–1547, 1986.
Ferreira, S.H., B.B. Lorenzetti, A.F. Bristow, and S. Poole, Interleukin–beta as a potent hyperalgesic agent antagonized by a tripeptide analogue, Nature 334: 698–703, 1988.
Katsuura, G., P.E. Gottschall, R.R. Dahl, and A. Arimura, Adrenocorticotropin release induced by intracerebroventricular injection of recombinant interleukin–1 in rats: possible involvement of prostaglandins, Endocrinology 122: 1773–1779, 1988.
Naitoh, Y., J. Fukata, T. Tominaga, Y. Nakai, S. Tami, K. Mori, and H. Imura, Interleukin–6 stimulates the secretion of adrenocorticotropic hormone in conscious freely moving rats, Biochem Biophys Res Commun 155: 1459–1463, 1988.
Antoni, FA., Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41–residue corticotropin releasing factor, Endocrine Rev 7: 351–378, 1986.
Tilders, F.J.H., F. Berkenbosch, and P.G. Smelik, Control of secretion of peptides related to adrenocorticotropin, melanocyte stimulating hormone and endorphin, Front Horm Res 14:161–196,1985.
Sapolsky, R., C. Rivier, G. Yamamoto, P. Plotsky, and W. Vale, Interleukin–1 stimulates the secretion of hypothalamic corticotropin releasing factor, Science 238: 522–524, 1987.
Uehara, A., P.E. Gottschall, R.R. Dahl, and A. Arimura, Interleukin–1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor, Endocrinology 121:1580–1582, 1987.
Berkenbosch, F., D. De Goeij, A. Del Rey, and H. Besedovsky, Neuroendocrine, sympathetic and metabolic responses induced by interleukin–1, Neuroendocrinology ,In Press, 1989.
Berkenbosch, F., D. De Goeij, and F.J.H. Tilders, Hypoglycemia enhances turnover of corticotropin releasing factor and of vasopressin in the zona externa of the median eminence, Endocrinology ,In Press, 1989.
Whitnall, M.H., E. Mezey, and H. Gainer, Colocalization of corticotropin releasing factor and vasopressin in the median eminence neurosecretory vesicles, Nature 317: 248–250, 1985.
Whitnall, M.H., D. Smyth, and H. Gainer, Vasopressin coexists in half of the corticotropin releasing factor axons in the external zone of the median eminence, Neuroendocrinology 45: 420–424, 1987.
Whitnall, M.H., Distribution of provasopressin expressing and provasopressin deficient CRF neurons in the paraventricular hypothalamic nucleus of colchicine treated normal and adrenalectomized rats, Comp Neurol ,In Press, 1989.
Uehara, A., S. Gillis, and A. Arimura, Effects of interleukin–1 on hormone release from normal rat pituitary cells in primary culture, Neuroendocrinology 45: 343–347, 1987.
Tsagarakis, S., G. Gillies, L.H. Rees, M. Besser, and A. Grossman, Interleukin–1 directly stimulates the release of corticotrophin releasing factor from the rat hypothalamus, Neuroendocrinology 49:98–101,1989.
Bernton, E.W., J.E. Beach, J.W. Holaday, R.C. Smallridge, and H.G. Fein, Release of multiple hormones by a direct action of interleukin–1 on pituitary cells, Science 238: 519–521, 1987.
Tracey, D.E., and E.B. De Souza, Identification of interleukin–1 receptors in mouse pituitary cell membranes and AtT–20 pituitary tumor cells, Society for Neuroscience, (Abstract #422.11), 1988.
Vankelecom, H., P. Carmeleit, J. Van Damme, A. Billiau, and C. Denef, Production of interleukin–6 by folliculo–stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system, Neuroendocrinology 49: 102–106, 1989.
Lumpkin, M.D., The regulation of ACTH secretion by interleukin–1, Science 238: 452–454, 1987.
Kehrer, P., D. Turnhill, J.M. Dayer, A.F. Muller, and R.C. Gaillard, Human recombinant interleukin–1 beta and alpha, but not recombinant tumor necrosis factor alpha stimulate ACTH release from the rat anterior pituitary cells in vitro in a prostaglandin E2 and cAMP independent manner, Neuroendocrinology 48: 160–166, 1988.
Suda, T., F. Tozawa, T. Ushiyama, N. Tomori, T. Sumitomo, Y. Nakagamai, M. Yamada, H. Demura, and K. Shizume, Effects of protein kinase C related adrenocorticotropin secretagogues and interleukin–1 on proopiomelanocortin gene expression in rat anterior pituitary cells, Endocrinology 124: 1444–1449, 1989.
Pike, R.L., and G.J.V. Nossal, Interleukin–1 can act as a beta–cell growth and differentiation factor, Proc Natl Acad Sci USA 82: 8153–8157, 1985.
Krueger, J.M., J. Walter, C.A. Dinarello, S.M. Wolf, and L. Cheded, Sleep–promoting effects of endogenous pyrogen (interleukin–1), Am J Physiol 246: R994–R999, 1984.
Ahmed, M.S., Q.J. Llanos, CA. Dinarello, and CM. Blatteis, Interleukin–1 reduces opioid binding in guinea pig brain, Peptides 6: 1149–1154, 1985.
Dunn, A.M., Systematic interleukin–1 administration stimulates norepinephrine metabolism paralleling the increased plasma corticosterone, Science 43: 429–435, 1988.
Kabiersch, A., A. Del Rey, C.G. Honegger, and H. Besedovsky, Interleukin–1 induces changes in norepinephrine metabolism in the rat brain, Brain Behav Immunol ,In Press, 1989.
Partridge, W.M., Neuropeptides and the blood–brain barrier, Ann Rev Physiol 45: 73–82, 1983.
Breder, C., C.A. Dinarello, and C.B. Saper, Interleukin–1 immunoreactive innervation of the human hypothalamus, Science 240: 321–324, 1988.
Berkenbosch, F., D. Caspers, R. Hellendall, V. Friedrich, L. Refolo, D. Lahiri, D. Blum, and N. Robakis, Roles for interleukin–1 and nerve growth factor in amyloid formation in Alzheimer’s disease, Society for Neuroscience, (Abstract), In Press, 1989.
Giulian D., J. Woodward, D.G. Young, J.F. Krebs, and L.B. Lachman, Interleukin–1 injected into mammalian brain stimulates astrogliosis and neurovascularization, J Neurosci 8: 2485–2490, 1988.
Giulian, D., D.G. Young, J. Woodward, D.C. Brown, and L.W. Lachman, Interleukin–1 as an astroglial growth factor in the developing brain, J Neurosci 8: 709–714, 1988.
Plotsky, P.M., Facilitation of immunoreactive corticotropin releasing factor secretion into hypophysial–portal circulation after activation of catecholaminergic pathways or central norepinephrine injection, Endocrinology 121: 924–930, 1987.
Morimoto, A., M. Murakami, T. Nakamori, and T. Watanabe, Multiple control of fever production in the central nervous system of rabbits, J Phyiol (Lond) 397: 269–280, 1988.
Stitt, J.T., Evidence for the involvement of the Organum vasculosum laminae terminalis in the febrile response of rabbits and rats, J Physiol (Lond) 368: 501–511, 1985.
Berkenbosch, F., J. Van Oers, A. Del Rey, F. Tilders, and H. Besedovsky, Corticotropin releasing factor–producing neurons in the rat activated by interleukin–1, Science 238: 524–526, 1987.
Uehara A., P.E. Gottschall, R.R. Dahl, and A. Arimura, Stimulation of ACTH release by human interleukin–1 beta but not by interleukin–1 alpha in conscious freely moving rats, Biochem Biophys Res Commun 146: 1286–1290, 1987.
Dubius, J.M., J.M. Dayer, CA. Siegrist–Kaiser, and A.G. Burger, Human recombinant interleukin–1 beta decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats, Endocrinology 123: 2175–2181, 1988.
Berkenbosch, F., I. Vermes, and F.J.H. Tilders, The beta–adrenoceptor blocking drug propranolol prevents secretion of immunoreactive–endorphin and–melanocyte stimulating hormone in response to certain stress stimuli, Endocrinology 115: 1051–1059, 1984.
Berkenbosch, F., F.J.H. Tilders, and I. Vermes, Beta–adrenoceptor activation mediates stress–induced secretion of beta–endorphin related peptides from the intermediate but not from the anterior pituitary, Nature 305: 237–329, 1983.
Cannon, J.G., J.B. Tatro, S. Reichlin, and C.A. Dinarello, Alpha–melanocyte–stimulating hormone inhibits immunostimulatory and inflammatory actions of interleukin–1, J Immunol 137: 2232–2236, 1986.
Daynes, RA., B.E. Robertson, B. Cho, D.K. Burnham, and R. Newton, Alpha–melanocyte stimulating hormone exhibits target cell selectivity in its capacity to affect interleukin–1 inducible responses in vivo and in vitro, J Immunol 139: 103–109, 1987.
Del Ray, A., H.O. Besedovsky, E. Sorkin, M. Da Prada, and S. Arrenbrecht, Immunoregulation mediated by the sympathetic nervous system II, Cell Immunol 63: 329–334, 1981.
Feiten, D.L., S.Y. Feiten, S.L. Carlson, JA. Olschowka, and S. Livnat, Noradrenergic and peptidergic innervation of lymphoid tissue, J Immunol 135: 755s–765s , 1985.
Brown, M.R., LA. Fisher, J. Durer, J. Spiess, C. Rivier, and W. Vale, Corticotropin releasing factor: effects on the sympathetic nervous system and oxygen consumption, Life Sci 30: 207–210, 1982.
Rothwell, N.J., CRF is involved in the pyrogenic and thermogenic effects of interleukin–1 beta in the rat, Am J Physiol 256: E111–E115, 1989.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1990 Plenum Press, New York
About this chapter
Cite this chapter
Berkenbosch, F., de Rijk, R., Del Rey, A., Besedovsky, H. (1990). Neuroendocrinology of Interleukin-1. In: Porter, J.C., Ježová, D. (eds) Circulating Regulatory Factors and Neuroendocrine Function. Advances in Experimental Medicine and Biology, vol 274. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5799-5_19
Download citation
DOI: https://doi.org/10.1007/978-1-4684-5799-5_19
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4684-5801-5
Online ISBN: 978-1-4684-5799-5
eBook Packages: Springer Book Archive