Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 274))

  • 131 Accesses

  • 22 Citations

Abstract

Inflammatory processes and infectious diseases induce a constellation of host responses referred to as acute phase response (1,2). These responses include changes in immunologic, metabolic, neurologic, and endocrinologic functions. Although many of its components are far from being understood, it is generally believed that the acute phase response serves to regain normal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dinarello, C.A., Interleukin–1 and the pathogenesis of the acute phase response, New Eng J Med 311: 1413–1418, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Frayn, K.N. Hormonal control of metabolism in trauma and sepsis,Clin Endocrinol 24: 577–599, 1986.

    Article  CAS  Google Scholar 

  3. Oppenheim, J .J., E.J. Kovács, K. Matsushima, and S.K. Durum, There is more than one interleukin–1, Immunol Today 7: 45–56, 1986.

    Article  CAS  Google Scholar 

  4. Lomedico, P.T., U. Gubler, C.P. Hellman, M. Dukovich, J.C. Giri, Y.C.E. Pan, K. Collier, R. Semionow, A.O. Chua, and S.B. Mizel, Cloning and expression of murine interleukin–1 cDNA in Eschericia Coli, Nature 312: 458–462, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. March, C.J., B. Mosley, A. Larsen, D.P. Ceretti, G. Breadt, V. Price, S. Gillis, C.S. Henney, S.R. Knonheim, K. Grabstein, P.J. Conlon, T.P. Hopp, and D. Kosman, Cloning, sequence and expression of two distinct human interleukin–1 complementary DNAs, Nature 315: 641–647, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Nishida, T., N. Nishino, K. Mizuno, Y. Sekiguch, M. Takano, K. Kawai, S. Nakai, and Y. Hirai, Cloning of the Cdnas for rat interleukin–1 alpha and beta, In Monokines and Other Non–Lymphocytic Cytokines ,A.R. Liss, New York, pp.73–78, 1988.

    Google Scholar 

  7. Bird, T.A., and J. Saklatvala, Identification of a common class of high affinity receptors for both types of porcine interleukin–1 on connective tissue cells, Nature 324: 263–266, 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Dower, S.K., S.M. Call, S. Gillis, and D.L. Urdal, Similarity between the interleukin–1 receptor on a murine T–lymphoma cell line and on a murine fibroblast cell line, Proc Natl Acad Sci USA 83:1060–1064, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Dower, S.K., S.R. Krohnheim, T.P. Hopp, M. Cantrell, M. Deeley, S. Gillis, C.S. Henney, and D.L. Urdal, The cell surface receptors for interleukin–land interleukin–1are identical, Nature 324: 266–268, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Kilian, P.L., K.L. Kaffka, A.S. Stein, D. Woehle, W.R. Benjamin, T.M. Decheria, U. Gabler, J .J. Farrar, S.B. Mizel, and P.T. Lomedico, Interleukin–1 alpha and interleukin–1 beta bind to the same receptor on T–cells, J Immunol 136: 4509–4514, 1986.

    PubMed  CAS  Google Scholar 

  11. Sims, J.E., C.J. March, D. Cosman, M.B. Widmer, R.H. MacDonald, C.J. McMahan, C.E. Grubin, J.M. Wignall, J.L. Jackson, S.M. Call, D. Frien, A.R. Alpert, S. Gillis, D.L. Urdal, and S.K. Dower, cDNA expression cloning of the interleukin–1 receptor, a member of the immunoglobulin superfamily, Science 241: 585–589, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Dinarello, C.A., Biology of interleukin–1, FASEB 2: 108–115, 1988.

    CAS  Google Scholar 

  13. Fontana, A., F. Kristensen, R. Dubi, D. Gemsa, and E. Weber, Production of prostaglandin E and an interleukin–1 like factor by cultured astrocytes and C6 glioma cells, J Immunol 129: 2413–2419, 1982.

    PubMed  CAS  Google Scholar 

  14. Fontana, A., E. Weber, and J.M. Dayer, Synthesis of interleukin–1/endogenous pyrogen in the brain of endotoxin–related mice: a step in fever induction, J Immunol 133: 1696–1698, 1984.

    PubMed  CAS  Google Scholar 

  15. Giulian, D., T.J. Baker, L–C.N. Shih, and L.B. Lachman, Interleukin–1 of the central nervous system is produced by ameloid microglia, J Exp Med 164: 594–604, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Besedovsky, H., A Del Rey, E. Sorkin, and C.A. Dinarello, Immunoregulatory feedback between interleukin–1 and glucocorticoid hormones, Science 233: 652–654, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Urquhart, J., Physiological actions of adrenocorticotropic hormone, In S.R. Geiger (ed) Handbook of Physiology, Endocrinology ,American Physiological Society, Washington, D.C., pp. 133, 1974.

    Google Scholar 

  18. DeWied, D., Pituitary–adrenal system hormones and behaviour, In F.O. Schmitt and F.G. Worden (eds) The Neurosciences ,MIT Press, Cambridge, pp. 653, 1974.

    Google Scholar 

  19. Munck, A., P.M. Guyre, and N.J. Holbrook, Physiological functions of glucocorticoids in stress and their relation to pharmacological actions, Endocrine Rev 5: 25–44, 1984.

    Article  CAS  Google Scholar 

  20. Bateman,A., A. Singh, T. Kral, and S. Solomon, The immune–hypothalamic pituitary–adrenal axis, Endocrine Rev 10: 92–112, 1989.

    Article  CAS  Google Scholar 

  21. Beisel, W.R. and M.I. Rapoport, Interrelations between adrenocortical functions and infectious illness, N Engl J Med 280: 541–546, 1969.

    Article  Google Scholar 

  22. Smith, E.M., W.J. Meyer, and J.E. Blalock, Virus induced corticosterone in hypophysectomized mice: a possible lymphoid–adrenal axis, Science 218: 1311–1312, 1982.

    Article  PubMed  CAS  Google Scholar 

  23. Nakano, K., S. Suzuki, and C. Oh, Significance of increased secretion of glucocorticoids in mice and rats injected with bacterial endotoxin, Brain Behav Immun 1: 159–172, 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Wolf, S.M., Biological effects of bacterial endotoxin in man, J Infect Dis 128: S259–S264, 1974.

    Article  Google Scholar 

  25. Lachman, L.B., Interleukin–1 release from LPS–stimulated mononuclear phagocytes, In A. Nowotny (ed) Beneficial Effect of Endotoxin ,Plenum Press, New York, pp. 283, 1983.

    Google Scholar 

  26. Okusawa, S., C.A. Dinarello, K.B. Yancey, S. Endies, T.J. Lawley, M.M Frank, J.F. Burke, and JA. Gelfand, G5a induction of human interleukin–1: synergistic effects with endotoxin or interferon–gamma, J Immunol 139: 2635–2640, 1987.

    PubMed  CAS  Google Scholar 

  27. Dunn, A. J., and M.L. Powell, Virus–induced increases in plasma corticosterone, Science 238:1423–1424, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Berkenbosch, F., A. Del Rey, J.W.A. Van Oers, F.J.H. Tilders, and H. Besedovsky, Feedback circuit involving the immuno–hormone interleukin–1 and the pituitary–adrenal system, In R. Kvetnansky and G. Van Loon (eds) Catecholamines and Other Neurotransmitters in Stress ,Gordon and Breach, New York, In Press, 1989.

    Google Scholar 

  29. Besedovsky, H.O., E. Sorkin, M. Keller, and J. Muller, Changes in blood hormone levels during the immune response, Proc Soc Exp Med 150: 466–470, 1975.

    CAS  Google Scholar 

  30. Besedovsky, H., A. Del Rey, E. Sorkin, W. Lotz, and U. Schuwela, Lymphoid cells produce an immunoregulatory glucocorticoid increasing factor (GIF) acting through the pituitary gland, Clin Exp Immunol 59: 622–628, 1985.

    PubMed  CAS  Google Scholar 

  31. Harbour–McMenemamin, D., E.M. Smith, and J.E. Blalock, Bacteria lipopolysaccharide induction of leukocyte–derived corticotropin and endorphins, Infect Immunol 48: 813–817, 1985.

    Google Scholar 

  32. Smith, E. K., and E.J. Blalock, Human lymphocyte production of corticotropin and endorphin like substances: association with leukocyte interferon, Proc Natl Acad Sci USA 78: 7530–7534, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Kavelaars, A., R.E. Ballieux, and C.J. Heijnen, The role of IL–1 in the corticotropin releasing factor and arginine–vasopressin induced secretion of immunoreactive beta–endorphin by human peripheral blood mononuclear cells, J Immunol ,In Press, 1989.

    Google Scholar 

  34. Besedovsky, H., and A. Del Rey, Neuroendocrine and metabolic responses induced by interleukin–1, J Neurosci Res 18: 172–178, 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Bendtzen, K., T. Mandrup–Poulson, J. Nerup, J.H. Nielsen, C.A. Dinarello, and M. Svenson, Cytoxicity of human pI 7 interleukin–1 for pancreatic islets of langerhans, Science 232: 1545–1547, 1986.

    Article  PubMed  CAS  Google Scholar 

  36. Ferreira, S.H., B.B. Lorenzetti, A.F. Bristow, and S. Poole, Interleukin–beta as a potent hyperalgesic agent antagonized by a tripeptide analogue, Nature 334: 698–703, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Katsuura, G., P.E. Gottschall, R.R. Dahl, and A. Arimura, Adrenocorticotropin release induced by intracerebroventricular injection of recombinant interleukin–1 in rats: possible involvement of prostaglandins, Endocrinology 122: 1773–1779, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Naitoh, Y., J. Fukata, T. Tominaga, Y. Nakai, S. Tami, K. Mori, and H. Imura, Interleukin–6 stimulates the secretion of adrenocorticotropic hormone in conscious freely moving rats, Biochem Biophys Res Commun 155: 1459–1463, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Antoni, FA., Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41–residue corticotropin releasing factor, Endocrine Rev 7: 351–378, 1986.

    Article  CAS  Google Scholar 

  40. Tilders, F.J.H., F. Berkenbosch, and P.G. Smelik, Control of secretion of peptides related to adrenocorticotropin, melanocyte stimulating hormone and endorphin, Front Horm Res 14:161–196,1985.

    CAS  Google Scholar 

  41. Sapolsky, R., C. Rivier, G. Yamamoto, P. Plotsky, and W. Vale, Interleukin–1 stimulates the secretion of hypothalamic corticotropin releasing factor, Science 238: 522–524, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Uehara, A., P.E. Gottschall, R.R. Dahl, and A. Arimura, Interleukin–1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor, Endocrinology 121:1580–1582, 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Berkenbosch, F., D. De Goeij, A. Del Rey, and H. Besedovsky, Neuroendocrine, sympathetic and metabolic responses induced by interleukin–1, Neuroendocrinology ,In Press, 1989.

    Google Scholar 

  44. Berkenbosch, F., D. De Goeij, and F.J.H. Tilders, Hypoglycemia enhances turnover of corticotropin releasing factor and of vasopressin in the zona externa of the median eminence, Endocrinology ,In Press, 1989.

    Google Scholar 

  45. Whitnall, M.H., E. Mezey, and H. Gainer, Colocalization of corticotropin releasing factor and vasopressin in the median eminence neurosecretory vesicles, Nature 317: 248–250, 1985.

    Article  PubMed  CAS  Google Scholar 

  46. Whitnall, M.H., D. Smyth, and H. Gainer, Vasopressin coexists in half of the corticotropin releasing factor axons in the external zone of the median eminence, Neuroendocrinology 45: 420–424, 1987.

    Article  PubMed  CAS  Google Scholar 

  47. Whitnall, M.H., Distribution of provasopressin expressing and provasopressin deficient CRF neurons in the paraventricular hypothalamic nucleus of colchicine treated normal and adrenalectomized rats, Comp Neurol ,In Press, 1989.

    Google Scholar 

  48. Uehara, A., S. Gillis, and A. Arimura, Effects of interleukin–1 on hormone release from normal rat pituitary cells in primary culture, Neuroendocrinology 45: 343–347, 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Tsagarakis, S., G. Gillies, L.H. Rees, M. Besser, and A. Grossman, Interleukin–1 directly stimulates the release of corticotrophin releasing factor from the rat hypothalamus, Neuroendocrinology 49:98–101,1989.

    Article  PubMed  CAS  Google Scholar 

  50. Bernton, E.W., J.E. Beach, J.W. Holaday, R.C. Smallridge, and H.G. Fein, Release of multiple hormones by a direct action of interleukin–1 on pituitary cells, Science 238: 519–521, 1987.

    Article  PubMed  CAS  Google Scholar 

  51. Tracey, D.E., and E.B. De Souza, Identification of interleukin–1 receptors in mouse pituitary cell membranes and AtT–20 pituitary tumor cells, Society for Neuroscience, (Abstract #422.11), 1988.

    Google Scholar 

  52. Vankelecom, H., P. Carmeleit, J. Van Damme, A. Billiau, and C. Denef, Production of interleukin–6 by folliculo–stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system, Neuroendocrinology 49: 102–106, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Lumpkin, M.D., The regulation of ACTH secretion by interleukin–1, Science 238: 452–454, 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Kehrer, P., D. Turnhill, J.M. Dayer, A.F. Muller, and R.C. Gaillard, Human recombinant interleukin–1 beta and alpha, but not recombinant tumor necrosis factor alpha stimulate ACTH release from the rat anterior pituitary cells in vitro in a prostaglandin E2 and cAMP independent manner, Neuroendocrinology 48: 160–166, 1988.

    Article  PubMed  CAS  Google Scholar 

  55. Suda, T., F. Tozawa, T. Ushiyama, N. Tomori, T. Sumitomo, Y. Nakagamai, M. Yamada, H. Demura, and K. Shizume, Effects of protein kinase C related adrenocorticotropin secretagogues and interleukin–1 on proopiomelanocortin gene expression in rat anterior pituitary cells, Endocrinology 124: 1444–1449, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Pike, R.L., and G.J.V. Nossal, Interleukin–1 can act as a beta–cell growth and differentiation factor, Proc Natl Acad Sci USA 82: 8153–8157, 1985.

    Article  PubMed  CAS  Google Scholar 

  57. Krueger, J.M., J. Walter, C.A. Dinarello, S.M. Wolf, and L. Cheded, Sleep–promoting effects of endogenous pyrogen (interleukin–1), Am J Physiol 246: R994–R999, 1984.

    PubMed  CAS  Google Scholar 

  58. Ahmed, M.S., Q.J. Llanos, CA. Dinarello, and CM. Blatteis, Interleukin–1 reduces opioid binding in guinea pig brain, Peptides 6: 1149–1154, 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Dunn, A.M., Systematic interleukin–1 administration stimulates norepinephrine metabolism paralleling the increased plasma corticosterone, Science 43: 429–435, 1988.

    CAS  Google Scholar 

  60. Kabiersch, A., A. Del Rey, C.G. Honegger, and H. Besedovsky, Interleukin–1 induces changes in norepinephrine metabolism in the rat brain, Brain Behav Immunol ,In Press, 1989.

    Google Scholar 

  61. Partridge, W.M., Neuropeptides and the blood–brain barrier, Ann Rev Physiol 45: 73–82, 1983.

    Article  Google Scholar 

  62. Breder, C., C.A. Dinarello, and C.B. Saper, Interleukin–1 immunoreactive innervation of the human hypothalamus, Science 240: 321–324, 1988.

    Article  PubMed  CAS  Google Scholar 

  63. Berkenbosch, F., D. Caspers, R. Hellendall, V. Friedrich, L. Refolo, D. Lahiri, D. Blum, and N. Robakis, Roles for interleukin–1 and nerve growth factor in amyloid formation in Alzheimer’s disease, Society for Neuroscience, (Abstract), In Press, 1989.

    Google Scholar 

  64. Giulian D., J. Woodward, D.G. Young, J.F. Krebs, and L.B. Lachman, Interleukin–1 injected into mammalian brain stimulates astrogliosis and neurovascularization, J Neurosci 8: 2485–2490, 1988.

    PubMed  CAS  Google Scholar 

  65. Giulian, D., D.G. Young, J. Woodward, D.C. Brown, and L.W. Lachman, Interleukin–1 as an astroglial growth factor in the developing brain, J Neurosci 8: 709–714, 1988.

    PubMed  CAS  Google Scholar 

  66. Plotsky, P.M., Facilitation of immunoreactive corticotropin releasing factor secretion into hypophysial–portal circulation after activation of catecholaminergic pathways or central norepinephrine injection, Endocrinology 121: 924–930, 1987.

    Article  PubMed  CAS  Google Scholar 

  67. Morimoto, A., M. Murakami, T. Nakamori, and T. Watanabe, Multiple control of fever production in the central nervous system of rabbits, J Phyiol (Lond) 397: 269–280, 1988.

    CAS  Google Scholar 

  68. Stitt, J.T., Evidence for the involvement of the Organum vasculosum laminae terminalis in the febrile response of rabbits and rats, J Physiol (Lond) 368: 501–511, 1985.

    CAS  Google Scholar 

  69. Berkenbosch, F., J. Van Oers, A. Del Rey, F. Tilders, and H. Besedovsky, Corticotropin releasing factor–producing neurons in the rat activated by interleukin–1, Science 238: 524–526, 1987.

    Article  PubMed  CAS  Google Scholar 

  70. Uehara A., P.E. Gottschall, R.R. Dahl, and A. Arimura, Stimulation of ACTH release by human interleukin–1 beta but not by interleukin–1 alpha in conscious freely moving rats, Biochem Biophys Res Commun 146: 1286–1290, 1987.

    Article  PubMed  CAS  Google Scholar 

  71. Dubius, J.M., J.M. Dayer, CA. Siegrist–Kaiser, and A.G. Burger, Human recombinant interleukin–1 beta decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats, Endocrinology 123: 2175–2181, 1988.

    Article  Google Scholar 

  72. Berkenbosch, F., I. Vermes, and F.J.H. Tilders, The beta–adrenoceptor blocking drug propranolol prevents secretion of immunoreactive–endorphin and–melanocyte stimulating hormone in response to certain stress stimuli, Endocrinology 115: 1051–1059, 1984.

    Article  PubMed  CAS  Google Scholar 

  73. Berkenbosch, F., F.J.H. Tilders, and I. Vermes, Beta–adrenoceptor activation mediates stress–induced secretion of beta–endorphin related peptides from the intermediate but not from the anterior pituitary, Nature 305: 237–329, 1983.

    Article  PubMed  CAS  Google Scholar 

  74. Cannon, J.G., J.B. Tatro, S. Reichlin, and C.A. Dinarello, Alpha–melanocyte–stimulating hormone inhibits immunostimulatory and inflammatory actions of interleukin–1, J Immunol 137: 2232–2236, 1986.

    PubMed  CAS  Google Scholar 

  75. Daynes, RA., B.E. Robertson, B. Cho, D.K. Burnham, and R. Newton, Alpha–melanocyte stimulating hormone exhibits target cell selectivity in its capacity to affect interleukin–1 inducible responses in vivo and in vitro, J Immunol 139: 103–109, 1987.

    PubMed  CAS  Google Scholar 

  76. Del Ray, A., H.O. Besedovsky, E. Sorkin, M. Da Prada, and S. Arrenbrecht, Immunoregulation mediated by the sympathetic nervous system II, Cell Immunol 63: 329–334, 1981.

    Article  Google Scholar 

  77. Feiten, D.L., S.Y. Feiten, S.L. Carlson, JA. Olschowka, and S. Livnat, Noradrenergic and peptidergic innervation of lymphoid tissue, J Immunol 135: 755s–765s , 1985.

    Google Scholar 

  78. Brown, M.R., LA. Fisher, J. Durer, J. Spiess, C. Rivier, and W. Vale, Corticotropin releasing factor: effects on the sympathetic nervous system and oxygen consumption, Life Sci 30: 207–210, 1982.

    Article  PubMed  CAS  Google Scholar 

  79. Rothwell, N.J., CRF is involved in the pyrogenic and thermogenic effects of interleukin–1 beta in the rat, Am J Physiol 256: E111–E115, 1989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Berkenbosch, F., de Rijk, R., Del Rey, A., Besedovsky, H. (1990). Neuroendocrinology of Interleukin-1. In: Porter, J.C., Ježová, D. (eds) Circulating Regulatory Factors and Neuroendocrine Function. Advances in Experimental Medicine and Biology, vol 274. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5799-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5799-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5801-5

  • Online ISBN: 978-1-4684-5799-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics