Skip to main content
  • 516 Accesses

Abstract

In Chapter II we found a solution of the Boltzmann equation, i.e., the Maxwellian. It is an exact solution of the Boltzmann equation and the most significant and widely used solution [other interesting solutions have been found but there is not sufficient space to discuss them here; some of them are discussed in detail in a book by Truesdell and Muncaster (ref. 1); see also Chapter VII, Section 14]. The meaning of the Maxwellian distribution is clear: it describes equilibrium states (or slight generalizations of them), characterized by the fact that neither heat flow nor stresses other than isotropic pressure are present. If we want to describe more realistic non-equilibrium situations, when oblique stresses are present and heat transfers take place, we have to rely upon approximation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas, Academic Press, New York (1980).

    Google Scholar 

  2. H. Grad, in: Rarefied Gas Dynamics (J. A. Laurmann, ed.), Vol. I, p. 100, Academic Press, New York (1963);

    Google Scholar 

  3. D. Hilbert, Math. Ann. 72, 562 (1912).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Riesz and B. Sz-Nagy, Functional Analysis (translated by L. Boron), Frederick Ungar, New York (1955).

    Google Scholar 

  5. I. Kuščcer and M. M. R. Williams, Phys. Fluids 10, 1922 (1967);

    Article  Google Scholar 

  6. O. O. Jenssen, Phys. Norvegica 6, 179 (1972);

    MathSciNet  Google Scholar 

  7. Y. P. Pao, in Rarefied Gas Dynamics (M. Becker and M. Fiebig, eds.), Vol. I, p. A.6-1, DFVLR Press, Porz-Wahn (1974);

    Google Scholar 

  8. Y. P. Pao, Commun. Pure Appl. Math. 27, 407 (1974);

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. P. Pao, Commun. Pure Appl. Math. 27, 559 (1974);

    Article  MathSciNet  Google Scholar 

  10. M. Klaus, Helv. Phys. Acta 50, 893 (1977).

    MathSciNet  Google Scholar 

  11. C. Cercignani, Phys. Fluids 10, 2097 (1967)

    Article  Google Scholar 

  12. H. Drange, SIAM J. Appl. Math. 29, 4 (1975).

    Article  MathSciNet  Google Scholar 

  13. C. S. Wang Chang and G. E. Uhlenbeck, ‘On the Propagation of Sound in Monatomic Gases, University of Michigan Press, Project M999, Ann Arbor, Michigan (1952).

    Google Scholar 

  14. Bateman Manuscript Project, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York (1953), pp. 64 and 188.

    Google Scholar 

  15. H. M. Mott-Smith, “A New Approach in the Kinetic Theory of Gases,” MIT Lincoln Laboratory Group Report V-2 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C. (1990). The Linearized Collision Operator. In: Mathematical Methods in Kinetic Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7291-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7291-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7293-4

  • Online ISBN: 978-1-4899-7291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics