Skip to main content

Single Nucleotide Polymorphisms (SNPs)

  • Chapter
Molecular Testing in Cancer

Abstract

Single nucleotide polymorphisms (SNPs) have been suggested as a useful tool for dissecting various human complex disorders, classically at a small scale and recently at large genome-wide levels. The advent of new technologies, including chip-based genotyping as well as high-throughput next generation sequencing, has opened new avenues for SNPs to be used in clinical practice. In this chapter, we summarize the current use of SNPs mainly SNP-based arrays in various clinical applications as well as describe the classical and recent methods of SNP detection and genotyping currently being used in the research and clinical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siva N. 1000 Genomes project. Nat Biotechnol. 2008;26(3):256.

    PubMed  Google Scholar 

  2. Pennisi E. Genomics. 1000 Genomes Project gives new map of genetic diversity. Science. 2010;330(6004):574–5.

    Article  CAS  PubMed  Google Scholar 

  3. Montpetit A, Chagnon F. The Haplotype Map of the human genome: a revolution in the genetics of complex diseases. Med Sci (Paris). 2006;22(12):1061–7.

    Article  Google Scholar 

  4. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Article  CAS  Google Scholar 

  5. International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789–96.

    Article  CAS  Google Scholar 

  6. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998;8(12):1229–31.

    CAS  PubMed  Google Scholar 

  7. Brookes AJ. The essence of SNPs. Gene. 1999;234(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  8. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet. 2001;27(3):234–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ladiges W, et al. Human gene variation: from SNPs to phenotypes. Mutat Res. 2004;545(1–2):131–9.

    Article  CAS  PubMed  Google Scholar 

  10. Frazer KA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Article  CAS  PubMed  Google Scholar 

  11. Hegele RA. SNP judgments and freedom of association. Arterioscler Thromb Vasc Biol. 2002;22(7):1058–61.

    Article  CAS  PubMed  Google Scholar 

  12. Stram DO. Tag SNP selection for association studies. Genet Epidemiol. 2004;27(4):365–74.

    Article  PubMed  Google Scholar 

  13. Gu CC, Rao DC. Designing an optimum genetic association study using dense SNP markers and family-based sample. Front Biosci. 2003;8:s68–80.

    Article  CAS  PubMed  Google Scholar 

  14. Martino A, Mancuso T, Rossi AM. Application of high-resolution melting to large-scale, high-throughput SNP genotyping: a comparison with the TaqMan method. J Biomol Screen. 2010;15(6):623–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mendisco F, et al. Application of the iPLEX Gold SNP genotyping method for the analysis of Amerindian ancient DNA samples: benefits for ancient population studies. Electrophoresis. 2011;32(3–4):386–93.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, et al. Direct inference of SNP heterozygosity rates and resolution of LOH detection. PLoS Comput Biol. 2007;3(11):e244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Arzimanoglou II, et al. Frequent LOH at hMLH1, a highly variable SNP in hMSH3, and negligible coding instability in ovarian cancer. Anticancer Res. 2002;22(2A):969–75.

    CAS  PubMed  Google Scholar 

  18. Dumur CI, et al. Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics. 2003;81(3):260–9.

    Article  CAS  PubMed  Google Scholar 

  19. Goransson H, et al. Quantification of normal cell fraction and copy number neutral LOH in clinical lung cancer samples using SNP array data. PLoS One. 2009;4(6):e6057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Huggins R, et al. Nonparametric estimation of LOH using Affymetrix SNP genotyping arrays for unpaired samples. J Hum Genet. 2008;53(11–12):983–90.

    Article  PubMed  Google Scholar 

  21. Huijsmans CJ, et al. Single nucleotide polymorphism (SNP)-based loss of heterozygosity (LOH) testing by real time PCR in patients suspect of myeloproliferative disease. PLoS One. 2012;7(7):e38362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfeifer D, et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood. 2007;109(3):1202–10.

    Article  CAS  PubMed  Google Scholar 

  23. Pfeiffer J, et al. LOH-profiling by SNP-mapping in a case of multifocal head and neck cancer. World J Clin Oncol. 2012;3(2):24–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou X, et al. Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Hum Genet. 2004;115(4):327–30.

    Article  CAS  PubMed  Google Scholar 

  25. Izumi K, et al. Mosaic maternal uniparental disomy of chromosome 15 in Prader-Willi syndrome: utility of genome-wide SNP array. Am J Med Genet A. 2013;161A(1):166–71.

    Article  PubMed  CAS  Google Scholar 

  26. Conlin LK, et al. Utility of SNP arrays in detecting, quantifying, and determining meiotic origin of tetrasomy 12p in blood from individuals with Pallister-Killian syndrome. Am J Med Genet A. 2012;158A(12):3046–53.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, et al. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia. Cancer Genet. 2011;204(12):654–65.

    Article  CAS  PubMed  Google Scholar 

  28. Cross J, et al. Resolution of trisomic mosaicism in prenatal diagnosis: estimated performance of a 50K SNP microarray. Prenat Diagn. 2007;27(13):1197–204.

    Article  PubMed  Google Scholar 

  29. Kearney HM, Kearney JB, Conlin LK. Diagnostic implications of excessive homozygosity detected by SNP-based microarrays: consanguinity, uniparental disomy, and recessive single-gene mutations. Clin Lab Med. 2011;31(4):595–613. ix.

    Article  PubMed  Google Scholar 

  30. Konecny M, et al. Identification of rare complete BRCA1 gene deletion using a combination of SNP haplotype analysis, MLPA and array-CGH techniques. Breast Cancer Res Treat. 2008;109(3):581–3.

    Article  PubMed  Google Scholar 

  31. Lai Y, Zhao H. A statistical method to detect chromosomal regions with DNA copy number alterations using SNP-array-based CGH data. Comput Biol Chem. 2005;29(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  32. Mackinnon RN, et al. CGH and SNP array using DNA extracted from fixed cytogenetic preparations and long-term refrigerated bone marrow specimens. Mol Cytogenet. 2012;5:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siggberg L, et al. High-resolution SNP array analysis of patients with developmental disorder and normal array CGH results. BMC Med Genet. 2012;13:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiszniewska J, et al. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2013; 22(1):79–87.

    Google Scholar 

  35. Bruno DL, et al. Pathogenic aberrations revealed exclusively by single nucleotide polymorphism (SNP) genotyping data in 5000 samples tested by molecular karyotyping. J Med Genet. 2011;48(12):831–9.

    Article  CAS  PubMed  Google Scholar 

  36. Van Loo P, et al. Analyzing cancer samples with SNP arrays. Methods Mol Biol. 2012;802:57–72.

    Article  PubMed  CAS  Google Scholar 

  37. Cui SF, Zhou Q, Qu XH. SNP genotyping for the genetic monitoring of laboratory mice by using a microarray-based method with dualcolour fluorescence hybridisation. Altern Lab Anim. 2012;40(3):155–63.

    CAS  PubMed  Google Scholar 

  38. Savage SA. Cancer genetic association studies in the genome-wide age. Per Med. 2008;5(6):589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anaya JM, et al. Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. Autoimmun Rev. 2012;11(4):276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Batra J, et al. Association between prostinogen (KLK15) genetic variants and prostate cancer risk and aggressiveness in Australia and a meta-analysis of GWAS data. PLoS One. 2011;6(11):e26527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Batra J, et al. A Kallikrein 15 (KLK15) single nucleotide polymorphism located close to a novel exon shows evidence of association with poor ovarian cancer survival. BMC Cancer. 2011;11:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Batra J, et al. Kallikrein-related peptidase 10 (KLK10) expression and single nucleotide polymorphisms in ovarian cancer survival. Int J Gynecol Cancer. 2010;20(4):529–36.

    Article  PubMed  Google Scholar 

  43. Dhillon PK, et al. Common polymorphisms in the adiponectin and its receptor genes, adiponectin levels and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(12):2618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. FitzGerald LM, et al. Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis. Prostate Cancer Prostatic Dis. 2009;12(2):192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iida R, et al. Multiplex single base extension method for simultaneous genotyping of non-synonymous SNP in the three human SOD genes. Electrophoresis. 2008;29(23):4788–94.

    Article  CAS  PubMed  Google Scholar 

  46. Lose F, et al. Common variation in Kallikrein genes KLK5, KLK6, KLK12, and KLK13 and risk of prostate cancer and tumor aggressiveness. Urol Oncol. 2013;31(5):635–43.

    Article  CAS  PubMed  Google Scholar 

  47. Shui IM, et al. Genetic variation in the toll-like receptor 4 and prostate cancer incidence and mortality. Prostate. 2012;72(2):209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stevens VL, et al. Genetic variation in the toll-like receptor gene cluster (TLR10-TLR1-TLR6) and prostate cancer risk. Int J Cancer. 2008;123(11):2644–50.

    Article  CAS  PubMed  Google Scholar 

  49. Yu Z, et al. Analysis of GABRB2 association with schizophrenia in German population with DNA sequencing and one-label extension method for SNP genotyping. Clin Biochem. 2006;39(3):210–8.

    Article  CAS  PubMed  Google Scholar 

  50. Burdick KE, et al. Genetic variation in the MET proto-oncogene is associated with schizophrenia and general cognitive ability. Am J Psychiatry. 2010;167(4):436–43.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pharoah PDP, et al. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4(11):850–60.

    Article  CAS  PubMed  Google Scholar 

  52. Braem MGM, et al. Genetic susceptibility to sporadic ovarian cancer: a systematic review. Biochim Biophys Acta. 2011;1816(2):132–46.

    CAS  PubMed  Google Scholar 

  53. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet. 2002;3(5):391–7.

    Article  CAS  PubMed  Google Scholar 

  54. Thomas DC, Haile RW, Duggan D. Recent developments in genomewide association scans: a workshop summary and review. Am J Hum Genet. 2005;77(3):337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weiss KM, Clark AG. Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 2002;18(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  56. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002;3(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  57. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  CAS  Google Scholar 

  58. Browning SR. Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet. 2008;124(5):439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Welter D et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2013 Dec 6. [Epub ahead of print].

    Google Scholar 

  60. Botstein D, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32(3):314–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fakhrai-Rad H, Pourmand N, Ronaghi M. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat. 2002;19(5):479–85.

    Article  CAS  PubMed  Google Scholar 

  62. Alderborn A, Kristofferson A, Hammerling U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res. 2000;10(8):1249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dabrowski PW, Nitsche A. MPSQed: a software for the design of multiplex pyrosequencing assays. PLoS One. 2012;7(6):e38140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dabrowski PW, Schroder K, Nitsche A. MultiPSQ: a software solution for the analysis of diagnostic n-plexed pyrosequencing reactions. PLoS One. 2013;8(3):e60055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen G, et al. A virtual pyrogram generator to resolve complex pyrosequencing results. J Mol Diagn. 2012;14(2):149–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ambroise J, et al. AdvISER-PYRO: amplicon identification using SparsE representation of PYROsequencing signal. Bioinformatics. 2013;29(16):1963–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ye S, Humphries S, Green F. Allele specific amplification by tetra-primer PCR. Nucleic Acids Res. 1992;20(5):1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang C, et al. A novel multiplex tetra-primer ARMS-PCR for the simultaneous genotyping of six single nucleotide polymorphisms associated with female cancers. PLoS One. 2013;8(4):e62126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shuber AP, Grondin VJ, Klinger KW. A simplified procedure for developing multiplex PCRs. Genome Res. 1995;5(5):488–93.

    Article  CAS  PubMed  Google Scholar 

  70. Olivier M, et al. High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Res. 2002;30(12):e53.

    Article  PubMed  PubMed Central  Google Scholar 

  71. de Arruda M, et al. Invader technology for DNA and RNA analysis: principles and applications. Expert Rev Mol Diagn. 2002;2(5):487–96.

    Article  PubMed  Google Scholar 

  72. Olivier M. The Invader assay for SNP genotyping. Mutat Res. 2005;573(1–2):103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nataraj AJ, et al. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis. 1999;20(6):1177–85.

    Article  CAS  PubMed  Google Scholar 

  74. Humphries SE, et al. Single-strand conformation polymorphism analysis with high throughput modifications, and its use in mutation detection in familial hypercholesterolemia. International Federation of Clinical Chemistry Scientific Division: Committee on Molecular Biology Techniques. Clin Chem. 1997;43(3):427–35.

    CAS  PubMed  Google Scholar 

  75. Han L, et al. Association of SOD1 and SOD2 single nucleotide polymorphisms with susceptibility to gastric cancer in a Korean population. APMIS. 2013;121(3):246–56.

    Article  CAS  PubMed  Google Scholar 

  76. Balogh K, et al. Genetic screening methods for the detection of mutations responsible for multiple endocrine neoplasia type 1. Mol Genet Metab. 2004;83(1–2):74–81.

    Article  CAS  PubMed  Google Scholar 

  77. Nagamine CM, Chan K, Lau YF. A PCR artifact: generation of heteroduplexes. Am J Hum Genet. 1989;45(2):337–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Highsmith Jr WE, et al. Use of a DNA toolbox for the characterization of mutation scanning methods. I: construction of the toolbox and evaluation of heteroduplex analysis. Electrophoresis. 1999;20(6):1186–94.

    Article  CAS  PubMed  Google Scholar 

  79. O'Donovan MC, et al. Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics. 1998;52(1):44–9.

    Article  PubMed  Google Scholar 

  80. Kurzawski G, et al. Mutation analysis of MLH1 and MSH2 genes performed by denaturing high-performance liquid chromatography. J Biochem Biophys Methods. 2002;51(1):89–100.

    Article  CAS  PubMed  Google Scholar 

  81. Iannone MA, et al. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry. 2000;39(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  82. Zhong XB, et al. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc Natl Acad Sci U S A. 2003;100(20):11559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lizardi PM, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19(3):225–32.

    Article  CAS  PubMed  Google Scholar 

  84. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol. 1998;16(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  85. Marras SA, Kramer FR, Tyagi S. Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal. 1999;14(5–6):151–6.

    Article  CAS  PubMed  Google Scholar 

  86. Mhlanga MM, Malmberg L. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods. 2001;25(4):463–71.

    Article  CAS  PubMed  Google Scholar 

  87. Lee LG, Connell CR, Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res. 1993;21(16):3761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Agalliu I, et al. Characterization of SNPs associated with prostate cancer in men of Ashkenazic descent from the set of GWAS identified SNPs: impact of cancer family history and cumulative SNP risk prediction. PLoS One. 2013;8(4):e60083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Le Hellard S, et al. SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi automated method for data storage and analysis. Nucleic Acids Res. 2002;30(15):e74.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bell PA, et al. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. BioTechniques 2002;Suppl:70–2, 74, 76–7.

    Google Scholar 

  91. Ugozzoli L, et al. Detection of specific alleles by using allele-specific primer extension followed by capture on solid support. Genet Anal Tech Appl. 1992;9(4):107–12.

    Article  CAS  PubMed  Google Scholar 

  92. Wang J, et al. High-throughput single nucleotide polymorphism genotyping using nanofluidic dynamic arrays. BMC Genomics. 2009;10:561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Li T, et al. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31(8):1039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vaarno J, et al. New separation-free assay technique for SNPs using two-photon excitation fluorometry. Nucleic Acids Res. 2004;32(13):e108.

    Article  PubMed  PubMed Central  Google Scholar 

  95. MacConaill LE, et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One. 2009;4(11):e7887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One. 2008;3(2):e1662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Chan M, et al. Evaluation of nanofluidics technology for high-throughput SNP genotyping in a clinical setting. J Mol Diagn. 2011;13(3):305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shen R, et al. High-throughput SNP genotyping on universal bead arrays. Mutat Res. 2005;573(1–2):70–82.

    Article  CAS  PubMed  Google Scholar 

  99. Steemers FJ, et al. Whole-genome genotyping with the single-base extension assay. Nat Methods. 2006;3(1):31–3.

    Article  CAS  PubMed  Google Scholar 

  100. Simpson CL, et al. MaGIC: a program to generate targeted marker sets for genome-wide association studies. Biotechniques. 2004;37(6):996–9.

    CAS  PubMed  Google Scholar 

  101. Peiffer DA, et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 2006;16(9):1136–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fan JB, et al. Highly parallel SNP genotyping. In: Cold Spring Harbor symposia on quantitative biology, vol 68; 2003. p. 69–78.

    Google Scholar 

  103. Matsuzaki H, et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 2004;14(3):414–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu WM, et al. Algorithms for large-scale genotyping microarrays. Bioinformatics. 2003;19(18):2397–403.

    Article  CAS  PubMed  Google Scholar 

  105. McCarroll SA, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet. 2008;40(10):1166–74.

    Article  CAS  PubMed  Google Scholar 

  106. Peters EJ, McLeod HL. Ability of whole-genome SNP arrays to capture ‘must have’ pharmacogenomic variants. Pharmacogenomics. 2008;9(11):1573–7.

    Article  CAS  PubMed  Google Scholar 

  107. Sun X, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;8(3):e58700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Dressman D, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. 2003;100(15):8817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ronaghi M, et al. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242(1):84–9.

    Article  CAS  PubMed  Google Scholar 

  111. Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92(5):255–64.

    Article  CAS  PubMed  Google Scholar 

  112. Zeng F, Jiang R, Chen T. PyroHMMsnp: an SNP caller for Ion Torrent and 454 sequencing data. Nucleic Acids Res. 2013;41(13):e136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu L, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  114. Quinlan AR, et al. Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods. 2008;5(2):179–81.

    Article  CAS  PubMed  Google Scholar 

  115. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  116. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24(3):133–41.

    Article  CAS  PubMed  Google Scholar 

  117. Altschul SF, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.

    Article  CAS  PubMed  Google Scholar 

  118. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cox DG, et al. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Hum Mol Genet. 2011;20(23):4732–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shendure J, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32.

    Article  CAS  PubMed  Google Scholar 

  121. Harris TD, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320(5872):106–9.

    Article  CAS  PubMed  Google Scholar 

  122. Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.

    Article  CAS  PubMed  Google Scholar 

  123. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8(3):186–94.

    Article  CAS  PubMed  Google Scholar 

  124. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  PubMed Central  CAS  Google Scholar 

  125. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Clements Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Batra, J., Srinivasan, S., Clements, J. (2014). Single Nucleotide Polymorphisms (SNPs). In: Yousef, G., Jothy, S. (eds) Molecular Testing in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8050-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8050-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8049-6

  • Online ISBN: 978-1-4899-8050-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics