Skip to main content

Recruitment of Coat Proteins to Liposomes and Peptidoliposomes

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1270))

  • 4350 Accesses

Abstract

Intracellular transport within the cell is generally mediated by membrane vesicles. Their formation is typically initiated by activation of small GTPases that then recruit cytosolic proteins to the membrane surface to form a coat, interact with cargo and accessory proteins, and deform the lipid bilayer to produce a transport vesicle. Liposomes proved to be a useful tool to study the molecular mechanisms of these processes in vitro. Here we describe the use of liposomes and peptidoliposomes presenting lipid-coupled cytosolic tails of cargo proteins for the in vitro analysis of the membrane recruitment of AP-1 adaptors in the process of forming AP-1/clathrin coats. AP-1 recruitment is mediated by the GTPase Arf1 and requires specific lipids and cargo signals. Interaction with cargo induces AP-1 oligomerization already in the absence of clathrin. Without cargo peptides, accessory proteins, such as amphiphysin 2, can be identified that stabilize AP-1 binding to liposomal membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    Article  CAS  PubMed  Google Scholar 

  2. Faini M, Beck R, Wieland FT, Briggs JAG (2013) Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol 23:279–288

    Article  CAS  PubMed  Google Scholar 

  3. Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Sollner TH, Rothman JE, Wieland FT (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96:495–506

    Article  CAS  PubMed  Google Scholar 

  4. Spang A, Matsuoka K, Hamamoto S, Schekman R, Orci L (1998) Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc Natl Acad Sci U S A 95:11199–11204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Matsuoka K, Orci L, Amherdt M, Bednarek SY, Hamamoto S, Schekman R, Yeung T (1998) COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93:263–275

    Article  CAS  PubMed  Google Scholar 

  6. Robinson MS, Bonifacino JS (2001) Adaptor-related proteins. Curr Opin Cell Biol 13:444–453

    Article  CAS  PubMed  Google Scholar 

  7. Crottet P, Meyer DM, Rohrer J, Spiess M (2002) ARF1.GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes. Mol Biol Cell 13:3672–3682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sato K, Nakano A (2005) Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol 12:167–174

    Article  CAS  PubMed  Google Scholar 

  9. Matsuoka K, Morimitsu Y, Uchida K, Schekman R (1998) Coat assembly directs v-SNARE concentration into synthetic COPII vesicles. Mol Cell 2:703–708

    Article  CAS  PubMed  Google Scholar 

  10. Meyer DM, Crottet P, Maco B, Degtyar E, Cassel D, Spiess M (2005) Oligomerization and dissociation of AP-1 adaptors are regulated by cargo signals and by ArfGAP1-induced GTP hydrolysis. Mol Biol Cell 16:4745–4754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Schmid EM, McMahon HT (2007) Integrating molecular and network biology to decode endocytosis. Nature 448:883–888

    Article  CAS  PubMed  Google Scholar 

  12. Huser S, Suri G, Crottet P, Spiess M (2013) Interaction of amphiphysins with AP-1 clathrin adaptors at the membrane. Biochem J 450:73–83

    Article  CAS  PubMed  Google Scholar 

  13. Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196

    Article  CAS  PubMed  Google Scholar 

  14. Leprince C, Romero F, Cussac D, Vayssiere B, Berger R, Tavitian A, Camonis JH (1997) A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J Biol Chem 272:15101–15105

    Article  CAS  PubMed  Google Scholar 

  15. Liang JO, Sung TC, Morris AJ, Frohman MA, Kornfeld S (1997) Different domains of mammalian ADP-ribosylation factor 1 mediate interaction with selected target proteins. J Biol Chem 272:33001–33008

    Article  CAS  PubMed  Google Scholar 

  16. Duronio RJ, Jackson-Machelski E, Heuckeroth RO, Olins PO, Devine CS, Yonemoto W, Slice LW, Taylor SS, Gordon JI (1990) Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc Natl Acad Sci U S A 87:1506–1510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Campbell C, Squicciarini J, Shia M, Pilch PF, Fine RE (1984) Identification of a protein kinase as an intrinsic component of rat liver coated vesicles. Biochemistry 23:4420–4426

    Article  CAS  PubMed  Google Scholar 

  18. Keen JH (1987) Clathrin assembly proteins: affinity purification and a model for coat assembly. J Cell Biol 105:1989–1998

    Article  CAS  PubMed  Google Scholar 

  19. Liang JO, Kornfeld S (1997) Comparative activity of ADP-ribosylation factor family members in the early steps of coated vesicle formation on rat liver Golgi membranes. J Biol Chem 272:4141–4148

    Article  CAS  PubMed  Google Scholar 

  20. Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161–168

    Article  CAS  PubMed  Google Scholar 

  21. Schelte P, Boeckler C, Frisch B, Schuber F (2000) Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs. Bioconjug Chem 11:118–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by grant 31003A-144111 from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Spiess Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huser, S., Suri, G., Crottet, P., Spiess, M. (2015). Recruitment of Coat Proteins to Liposomes and Peptidoliposomes. In: Tang, B. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 1270. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2309-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2309-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2308-3

  • Online ISBN: 978-1-4939-2309-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics