Skip to main content

Analysis RNA-seq and Noncoding RNA

  • Protocol
  • First Online:
Polycomb Group Proteins

Abstract

RNA-Seq is an approach to transcriptome profiling that uses deep-sequencing technologies to detect and accurately quantify RNA molecules originating from a genome at a given moment in time. In recent years, the advent of RNA-Seq has facilitated genome-wide expression profiling, including the identification of novel and rare transcripts like noncoding RNAs and novel alternative splicing isoforms.

Here, we describe the analytical steps required for the identification and characterization of noncoding RNAs starting from RNA-Seq raw samples, with a particular emphasis on long noncoding RNAs (lncRNAs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ranzani V, Rossetti G, Panzeri I, Arrigoni A, Bonnal RJ, Curti S et al (2015) The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol 16:318–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pagani M, Rossetti G, Panzeri I, Candia P, Bonnal RJ, Rossi RL et al (2013) Role of microRNAs and long non coding RNAs in CD4(+) T cell differentiation. Immunol Rev 253:82–96

    Article  PubMed  Google Scholar 

  5. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  6. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  CAS  PubMed  Google Scholar 

  7. Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends Genet 30:121–123

    Article  CAS  PubMed  Google Scholar 

  8. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53

    Article  CAS  PubMed  Google Scholar 

  9. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  11. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S et al (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666

    Article  CAS  PubMed  Google Scholar 

  12. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27:i275–i282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun K, Chen X, Jiang P, Song X, Wang H, Sun H (2013) iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC Genomics 14:S7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Park HJ, Dasari S, Wang S, Kocher J, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li A, Zhang J, Zhou Z (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinform 15:311

    Article  Google Scholar 

  17. Barski A, Cuddapah S, Cui K, Roh T, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  18. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120, btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  21. Anders S, Pyl PT, Huber W (2014) HTSeq–A Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169, btu638

    Article  PubMed  PubMed Central  Google Scholar 

  22. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths‐Jones S et al (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22:5–7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raoul J. P. Bonnal or Massimiliano Pagani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arrigoni, A. et al. (2016). Analysis RNA-seq and Noncoding RNA. In: Lanzuolo, C., Bodega, B. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 1480. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6380-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6380-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6378-2

  • Online ISBN: 978-1-4939-6380-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics