Skip to main content

High Throughput Screening

  • Protocol
Molecular Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 4993 Accesses

  • 10 Citations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pharmaceutical Research and Manufacturers of America (2006) Pharmaceutical industry profile 2004. Washington, DC: PhRMA, http://www.phrma.org/

  2. DiMasi J (2001) New drug development in the United States from 1963 to 1999. Clin Pharmacol Therap 69:286–296

    CAS  Google Scholar 

  3. DiMasi J, Hansen R, Grabowski H (2003) The price of innovation, estimates of drug development costs. J Health Economics 22:151–185

    Google Scholar 

  4. Booth B, Zemmel R (2004) Prospects for productivity. Nat Rev Drug Discovery 3:451–456

    CAS  Google Scholar 

  5. Hopp, Spearman (1996) Factory physics. Richard D Irwin, Chicago

    Google Scholar 

  6. Fox S, Farr-Jones S, Sopchak L, Boggs A, Comley J (2004) High-throughput screening: searching for higher productivity. J Biomol Screen 9:354–358

    PubMed  CAS  Google Scholar 

  7. Fleming A (1929) On the antibacterial action of cultures of penicillium, with special reference to their use in the isolation of B Influenza. Br J Exp Med 10:226–236

    CAS  Google Scholar 

  8. Chain EB, Florey HW, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG (1940) Penicillin as a chemotherapeutic agent. Lancet 2:226–228

    Google Scholar 

  9. Sneader W (1985) Drug discovery: the evolution of modern medicines. John Wiley, NY

    Google Scholar 

  10. Smith C (1992) The process of new drug discovery and development. CRC, Boca Raton, FL

    Google Scholar 

  11. Watson JD, Crick FHC (1953) Mol Structure Nucleic Acids. Nature 171:737–738

    PubMed  CAS  Google Scholar 

  12. McCullough JM (1976) Genetic engineering, human genetics, and cell biology: U.S. Govt. Printing Office, Washington, DC

    Google Scholar 

  13. Geysen HM, Meleon RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci 81:3998–4002

    PubMed  CAS  Google Scholar 

  14. Houghton RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interactions at the level of individual acids. Proc Natl Acad Sci 82:5131–5135

    Google Scholar 

  15. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discovery 5:785–799

    CAS  Google Scholar 

  16. Hertzberg R (2002) Design and implementation of high throughput screening. In: Janzen W (ed) High throughput screening methods and protocols. Humana, Totowa, NJ, pp 1–29

    Google Scholar 

  17. Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discovery 5:821–834

    CAS  Google Scholar 

  18. Johnston P (2002) Cellular assays in HTS. In: Janzen W (ed) High throughput screening methods and protocols Humana, Totowa, NJ, pp 107–116

    Google Scholar 

  19. Coecke S, Eskes, C, Gartion J, van Vliet E, Kinsner A, Bogni A, Raimondo L, Parissis N, Langezaal I (2002) Metabolism and neurotoxicity: the significance of genetically engineered cell lines and new three-dimensional cell cultures ATLA 30,Suppl 2:115–118

    PubMed  CAS  Google Scholar 

  20. Darrow A, Conway K, Vaidya A, Rosenthal D, Wildey M, Minor L, Itkin Z, Kong Y, Piesvaux J, Qi J, Mercken M, Andrade-Gordon P, Plata-Salamàn C, Ilyin S (2003) Virus-based expression systems facilitate rapid target in vivo functionality validation and high-throughput screening. J Biomol Screening 8:65–71

    CAS  Google Scholar 

  21. Xin H, Bernal A, Amato A, Pinhasov A, Kauffman J, Brenneman D, Derian C, Andrade-Gordon P, Plata-Salamàn C, Ilyin S (2004) High-Throughput siRNA-based functional target validation. J Biomol Screening 9:286–293

    CAS  Google Scholar 

  22. Haberman A (2005) Targets and druggablity for small and large molecule drugs. Genetic Engineering News 25:36

    Google Scholar 

  23. Bleicher K, Bohm HJ, Muller K, Allanine A (2003) Strategies to move beyond target validation. Nat Rev Drug Discovery 3:369–278

    Google Scholar 

  24. Collins I, Workman P (2006) New approaches to molecular cancer therapeutics. Nat Chem Biol 2:689–700

    PubMed  CAS  Google Scholar 

  25. Comley J, Reeves T, Robinson P (1998) A 1536 Colorimetric SPAP reporter assay: comparison with 96- and 384-well formats. J Biomol Screening 3:217–225

    CAS  Google Scholar 

  26. Fox S, Farr-Jones S, Sopchak L, Boggs A, Comley J (2004) High-throughput screening: searching for higher productivity. J Biomol Screening 9:354–358

    CAS  Google Scholar 

  27. Oldenburg K, Zhang JH, Chen T, Maffia A, Blom K, Combs A, Chung T (1998) Assay miniaturization for ultra-high throughput screening of combinatorial and discrete compound libraries: a 9600-well (0.2 microliter) assay system. J Biomol Screening 3:55–62

    CAS  Google Scholar 

  28. Berg M, Undisz K, Thiericke R, Zimmermann P, Moore T, Posten C (2001) Evaluation of liquid handling conditions in microplates. J Biomol Screening 2:47–56

    Google Scholar 

  29. Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discovery 1:198–210

    CAS  Google Scholar 

  30. Kulanthaivel P, Hallock Y, Boros C, Hamilton S, Janzen W, Ballas L, Loomis C, Jiang J (1993) Balanol: a novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. JACS 115:6452–6453

    CAS  Google Scholar 

  31. Udenfriend S, Gerber L, Nelson N (1987) Scintillation proximity assay: a sensitive and continuous isotopic method for monitoring ligand/receptor and antigen/ antibody interactions. Anal Biochem 161:494–500

    PubMed  CAS  Google Scholar 

  32. Bosworth N, Towers P (1989) Scintillation proximity assay. Nature 341:16

    Google Scholar 

  33. Carpenter J, Laethem C, Hubbard F, Eckols T, Baez M, McClure D, Nelson D, Johnston P (2002) Configuring radioligand receptor binding assays for hts using scintillation proximity assay technology: In: Janzen W (ed) High throughput screening methods and protocols. Humana, Totowa, NJ. pp 31–49

    Google Scholar 

  34. Cook N (1996) Scintillation proximity assay – a versatile high throughput screening technology. Drug Discovery Today 1:287–294

    CAS  Google Scholar 

  35. van der Hee R, Deurholt T, Gerhardt C, de Groene E (2005) Comparison of 3 AT1 receptor binding assays: filtration assay, ScreenReady™ Target, and WGA Flashplateê. J Biomol Screening 10:118–126

    Google Scholar 

  36. Fox S (1996) Amersham offers Cytostar-T for cell based assay techniques. Gen Eng News 16:10–11

    Google Scholar 

  37. Perrin F (1926) Polarization de la lumiere de fluorescence. Vie moyenne de molecules dans l'etat excite. J Phys Radium 7:390

    CAS  Google Scholar 

  38. Weber G (1953) Rotational Brownian motion and polarization of the fluorescence of solutions. Adv Protein Chem 8:415

    PubMed  CAS  Google Scholar 

  39. Jolley M (1981) Fluorescence polarization immunoassay for the determination of therapeutic drug levels in human-plasma. J Anal Toxicol 5:236–240

    PubMed  CAS  Google Scholar 

  40. Jolley M (1996) Fluorescence polarization assays for the detection of proteases and their inhibitors. J Biomolr Screening 1:33–38

    CAS  Google Scholar 

  41. Banks P, Gosselin M, Prystay L (2000) fluorescence polarization assays for high throughput screening of g protein-coupled receptors. J Biomol Screening 5:159–167

    CAS  Google Scholar 

  42. Gaudet E, Huang K, Zhang Y, Huang W, Mark D, Sportsman R (2003) A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases. J Biomol Screening 8:164–175

    CAS  Google Scholar 

  43. Owicki J (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screening 5:297–306

    CAS  Google Scholar 

  44. Banks P, Harvey M (2002) Considerations for using fluorescence polarization in the screening of G protein-coupled receptors. J Biomol Screening 7:111–117

    CAS  Google Scholar 

  45. Selvin P (1995) Fluorescence resonance energy transfer. Methods Enzymol 246:300–334

    PubMed  CAS  Google Scholar 

  46. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    PubMed  CAS  Google Scholar 

  47. Preaudat M, Ouled-Diaf J, Alpha-Bazin B, Mathis G, Mitsugi T, Aono Y, Takahashi K, Takemot H (2002) A homogeneous caspase-3 activity assay using HTRF(R) technology. J Biomol Screening 7:267–274

    CAS  Google Scholar 

  48. Pope A (1999) Introduction LANCETM vs. HTRF(R) technologies (or vice versa). J Biomol Screening 4:301, 302

    Google Scholar 

  49. Mathis G (1999) HTRF(R) technology. J Biomol Screening 4:309–313

    CAS  Google Scholar 

  50. Yan Y, Boldt-Houle D, Tillotson B, Gee M, D'Eon B, Chang X, Olesen C, Palmer M (2002) J cell-based high-throughput screening assay system for monitoring G protein-coupled receptor activation using {beta}-galactosidase enzyme complementation technology. J Biomol Screening 7:451–459

    CAS  Google Scholar 

  51. Beske O, Guo J, Li J, Bassoni D, Bland K, Marciniak H, Zarowitz M, Temov V, Ravkin I, Goldbard S (2004) A novel encoded particle technology that enables simultaneous interrogation of multiple cell types. J Biomol Screening 9:173– 185

    CAS  Google Scholar 

  52. Ghosh R, DeBiasio R, Hudson C, Ramer E, Cowan C, Oakley R (2005) Quantitative cell-based high-content screening for vasopressin receptor agonists using transfluor(R)technology. J Biomol Screening 10:476–484

    CAS  Google Scholar 

  53. Miraglia S, Swartzman E, Mellentin-Michelotti J, Evangelista L, Smith C, Gunawan I, Lohman K, Goldberg E, Manian B, Yuan P (1999) Homogeneous cell- and bead-based assays for high throughput screening using fluorometric microvolume assay technology. J Biomol Screening 4:193–204

    CAS  Google Scholar 

  54. Davis G, Downs T, Farmer J, Pierson R, Roesgen J, Cabrera E, Nelson S (2002) Comparison of high throughput screening technologies for luminescence cell-based reporter screens. J Biomol Screening 7:67–77

    CAS  Google Scholar 

  55. Schroeder K, Neagle B (1996) FLIPR: a new instrument for accurate, high throughput optical screening. J Biomol Screening 3:75–80

    Google Scholar 

  56. Baxter D, Kirk M, Garcia A, Raimondi A, Holmqvist M, Flint K, Bojanio D, Distefano P, Curtis R, Xie Y (2002) A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels. J Biomol Screening 2:79–85

    Google Scholar 

  57. Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, Rizzuto R (1995) Transfected aqueorin in the measurement of cytosolic Ca2+ concentration (Ca2+C): a critical evaluation. J Biol Chem 270:9896–9903

    PubMed  CAS  Google Scholar 

  58. Kariv I, Stevens M, Behrens D, Oldenburg K (1999) High throughput quantitation of cAMP production mediated by activation of seven transmembrane domain receptors. J Biomol Screening 4:27–32

    CAS  Google Scholar 

  59. Prystay L, Gagne A, Kasila P, Yeh L, Banks P (2001) Homogeneous cell-based fluorescence polarization assay for the direct detection of cAMP. J Biomol Screening 6:75–82

    CAS  Google Scholar 

  60. Allen M, Hall D, Collins B, Moore K (2002) A homogeneous high throughput non-radioactive method for measurement of functional activity of Gs-coupled receptors in membranes. J Biomol Screening 7:35–44

    CAS  Google Scholar 

  61. Golla R, Seethala R (2002) A homogeneous enzyme fragment complementation cyclic AMP screen for GPCR agonists. J Biomol Screening 7:515–525

    CAS  Google Scholar 

  62. Chiulli A, Trompeter K, Palmer M (2000) A novel high throughput chemiluminescent assay for the measurement of cellular cyclic adenosine monophosphate levels. J Biomol Screening 5:239–247

    CAS  Google Scholar 

  63. Selkirk J, Nottebaum L, Ford I, Santos M, Malany S, Foster A, Lechner S (2006) A novel cell-based assay for G-protein-coupled receptor-mediated cyclic adenosine monophosphate response element binding protein phosphorylation. J Biomol Screening 11:351–358

    CAS  Google Scholar 

  64. Vrecl M, Jorgensen R, Pogacnik A, Heding A (2004) Development of a BRET2 screening assay using {beta}-arrestin 2 mutants. J Biomol Screening 9:322–333

    CAS  Google Scholar 

  65. Ghosh R, DeBiasio R, Hudson C, Ramer E, Cowan C, Oakley R (2005) Quantitative cell-based high-content screening for vasopressin receptor agonists using transfluor(R)technology. J Biomol Screening 10:476–484

    CAS  Google Scholar 

  66. Hamdan F, Audet M, Garneau P, Pelletier J, Bouvier M (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based {beta}-arrestin2 recruitment assay. J Biomol Screening 10:463–475

    CAS  Google Scholar 

  67. Shimomura O, Johnson F, Masugi T (1969) Cypridina bioluminescence: light-emitting oxyluciferin-luciferase complex. Science 164:1299, 1300

    PubMed  CAS  Google Scholar 

  68. Terstappen G, Giacometti A, Ballini E, Aldegheri L (2000) Development of a functional reporter gene HTS assay for the identification of mGluR7 modulators. J Biomol Screening 5:255–261

    CAS  Google Scholar 

  69. Nieuwenhuijsen B, Huang Y, Wang Y, Ramirez F, Kalgaonkar G, Young K (2003) A dual luciferase multiplexed high-throughput screening platform for protein–protein interactions. J Biomol Screening 8:676–684

    CAS  Google Scholar 

  70. Kolb A, Neumann K (1996) Luciferase measurements in high throughput screening. J Biomol Screening 1:85–88

    CAS  Google Scholar 

  71. George S, Bungay P, Naylor L (1997) Evaluation of a CRE-directed luciferase reporter gene assay as an alternative to measuring cAMP accumulation. J Biomol Screening 2:235–240

    CAS  Google Scholar 

  72. Giuliano K, DeBiasio R, Dunlay T, Gough A, Volosky J, Zock J, Pavlakis G, Taylor DL (1997) High-content screening: a new approach to easing key bottlenecks in the drug discovery process. J Biomol Screening 6:249–259

    Google Scholar 

  73. Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71:5340–5347

    PubMed  CAS  Google Scholar 

  74. Macounova K, Cabrera CR, Holl MR, Yager P (2000) Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal Chem 72:3745–3751

    PubMed  CAS  Google Scholar 

  75. Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Microchip device for performing enzyme assays. Anal Chem 69:3407–3412

    PubMed  CAS  Google Scholar 

  76. Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71:4669–4678

    CAS  Google Scholar 

  77. Hadd AC, Jacobson SC, Ramsey JM (1999) Microfluidic assays of acetylcholinesterase inhibitors. Anal Chem 71:5206–5212

    CAS  Google Scholar 

  78. Macounova K, Cabrera CR, Yager P (2001) Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. Anal Chem 73:1627–1633

    PubMed  CAS  Google Scholar 

  79. Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sensors and Actuators B-Chemical 72:129–133

    Google Scholar 

  80. Yang TL, Jung SY, Mao HB, Cremer PS (2001) Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal Chem 73: 165–169

    PubMed  CAS  Google Scholar 

  81. Perrin D, Fremaux C, Besson D, Sauer W, Scheer A (2006) A microfluidics-based mobility shift assay to discover new tyrosine phosphatase inhibitors J Biomol Screening 11:108–112

    Google Scholar 

  82. Sohn LL (2000) Capacitance cytometry: measuring biological cells one by one. Proc Natl Acad Sci USA 97:10687–10690

    PubMed  CAS  Google Scholar 

  83. Young S, Curry M, Ransom J, Ballesteros J, Prossnitz E, Sklar L, Edwards B (2004) High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening. J Biomol Screening 9:103–111

    CAS  Google Scholar 

  84. Gunter B, Brideau C, Pikounis Y, Liaw A (2003) Statistical and graphical methods for quality control determination of high-throughput screening data. J Biomol Screening 8:624–633

    Google Scholar 

  85. Gribbon P, Lyons R, Laflin P, Bradley J, Chambers C, Williams B, Keighley W, Sewing A (2005) Evaluating real-life high-throughput screening data. J Biomol Screening 10:99–107

    CAS  Google Scholar 

  86. Woodward P, Williams C, Sewing A, Benson N (2006) Improving the design and analysis of high-throughput screening technology comparison experiments using statistical modeling. J Biomol Screening 11:5–12

    CAS  Google Scholar 

  87. Gunter B, Brideau C, Pikounis B, Liaw A (2003) Statistical and graphical methods for quality control determination of high-throughput screening data. J Biomol Screening 12: 8:624–633

    Google Scholar 

  88. Altekar M, Homon CA, Kashem MA, Mason SW, Nelson RM, Patnaude LA, Yingling J, Taylor PB (2006) Assay optimization: a statistical design of experiments approach. J Assoc Lab Automation 11:33–41

    CAS  Google Scholar 

  89. Sherrill T, Snider J, Terpstra N, Vanderpool C, Schmidt W (1999) Accelerating assay development using experimental design and integrated liquid handling. J Assoc Lab Automation 4:76–84

    Google Scholar 

  90. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screening 4:67–73

    Google Scholar 

  91. Balaban AT (1979) Five new topological indices for the branching of tree-like graphs. Theoretica Chimica Acta 53:355–375

    CAS  Google Scholar 

  92. Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404

    CAS  Google Scholar 

  93. CRC Handbook of Chemistry and Physics (1994). CRC, Boca Ratan, FL

    Google Scholar 

  94. Wildman SA, Crippen GM (1999) Prediction of physiochemical parameters by atomic contributions. J Chem Inf Comput Sci 39:868–873

    CAS  Google Scholar 

  95. Gasteiger J, Marsali M (1980) Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron 36:3219

    CAS  Google Scholar 

  96. Hall LH, Kier LB (1997) The nature of structure–activity relationships and their relation to molecular connectivity. Eur J Med Chem Chimica Therapeutica 4:307–312

    Google Scholar 

  97. Petitjean M (1992) Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J Chem Inf Comput Sci 32:331–337

    CAS  Google Scholar 

  98. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    PubMed  CAS  Google Scholar 

  99. Soderholm J, Uehara-Bingen M, Weis K, Heald R (2006) Challenges facing the biologist doing chemical genetics. Nat Chem Biol 2:55–58

    PubMed  CAS  Google Scholar 

  100. Provis J (2005) Compound management and enhancement activities in astrazeneca. J Assoc Lab Automation 10:124–129

    Google Scholar 

  101. Moore KW, Chandler G, Whalley P, Gannon D, Simpson PB (2006) Efficient sample logistics: from the chemist to the assay plate and beyond. J Assoc Lab Automation 11:92–99

    CAS  Google Scholar 

  102. Brideau C, Hunter J, Maher J, Adam S, Fortin LJ, Ferentinos J (2004) SOS – a sample ordering system for delivering “assay-ready” compound plates for drug screening. J Assoc Lab Automation 9:123–127

    CAS  Google Scholar 

  103. Solomon FJ, DeChard CS, Donnenberg R (2006) The design, development, and implementation of a fully automated compound distribution center. J Assoc Lab Automation 11:138–144

    Google Scholar 

  104. Gedrych M (2000) Automated compound storage and retrieval system for microplates and tubes. J Assoc Lab Automation 5:24–25

    Google Scholar 

  105. Schopfer U (2005) The novartis compound archive: from concept to reality. Comb Chem High Throughput Screen 8:213

    Google Scholar 

  106. Beggs M, Blok H, Mertens J (1999) Stacker modules used in a high-capacity robotics system for high throughput screening compound replication. J Biomol Screening 4:373–379

    CAS  Google Scholar 

  107. Harrison W (1997) The importance of automated sample management systems in realizing the potential of large compound libraries in drug discovery. J Biomol Screening 2:203–206

    CAS  Google Scholar 

  108. Cheng X, Hochlowski J, Tang H, Hepp D, Beckner C, Kantor S, Schmitt R (2003) Studies on repository compound stability in dmso under various conditions. J Biomol Screening 8:292–304

    CAS  Google Scholar 

  109. Tjernberg A, Markova N, Griffiths W, Hallen D (2006) DMSO-related effects in protein characterization. J Biomol Screening 11:131–137

    CAS  Google Scholar 

  110. Kozikowski B, Burt T, Tirey D, Williams L, Kuzmak B, Stanton D, Morand K, Nelson S (2003) The effect of freeze/thaw cycles on the stability of compounds in DMSO. J Biomol Screening 8:210–215

    CAS  Google Scholar 

  111. Kozikowski B, Burt T, Tirey D, Williams L, Kuzmak B, Stanton D, Morand K, Nelson S (2003) The effect of room-temperature storage on the stability of compounds in DMSO. J Biomol Screening 8:205–209

    CAS  Google Scholar 

  112. Semin D, Malone T, Paley M, Woods P (2005) A novel approach to determine water content in DMSO for a compound collection repository. J Biomol Screening 10:568–572

    CAS  Google Scholar 

  113. Balakin K, Ivanenkov Y, Skorenko A, Nikolsky Y, Savchuk N, Ivashchenko A (2004) In silico estimation of dmso solubility of organic compounds for bioscreening. J Biomol Screening 9:22–31

    CAS  Google Scholar 

  114. Rasmussen D, Mackenzie A (1969) Phase diagram for the system water –dimethylsulphoxide. Nature 220:1315–1317

    Google Scholar 

  115. Menke K (2002) Unit automation in high throughput screening, In: Janzen W. (ed) High throughput screening methods and protocols. Humana, Totowa, NJ, pp 195–212

    Google Scholar 

  116. Cohen S, Trinka R (2002) Fully automated screening systems. In: Janzen W (ed) High throughput screening methods and protocols. Humana, Totowa, NJ, pp 213–228

    Google Scholar 

  117. Hodder P, Mull R, Cassaday J, Berry K, Strulovici B (2004) Miniaturization of intracellular calcium functional assays to 1536-well plate format using a fluorometric imaging plate reader. J Biomol Screening 9:417–426

    CAS  Google Scholar 

  118. George J, Teear ML, Norey CG, Burns DD (2003) Evaluation of an imaging platform during the development of a fret protease assay. J Biomol Screening 8:72–80

    CAS  Google Scholar 

  119. Sorg G, Schubert H, Buttner FH, Heilker R (2002) Automated high throughput screening for serine kinase inhibitors using a LEADSeekerTM scintillation proximity assay in the 1536-well format. J Biomol Screening 7:11–19

    CAS  Google Scholar 

  120. Ramm P, Alexandrov Y, Cholewinski A, Cybuch Y, Nadon R, Soltys B (2003) Automated screening of neurite outgrowth. J Biomol Screening 8:7–18

    Google Scholar 

  121. Skwish S, Asensio F, Gregking Clarke G, Kath G, Salvatore MJ, Dufresne C (2004) FIZICS: fluorescent imaging zone identification system, a novel macro imaging system. J Biomol Screening 9:663–370

    CAS  Google Scholar 

  122. Popa-Burke IG, Issakova O, Arroway JD, Bernasconi P, Chen M, Coudurier L, Galasinski S, Janzen WP, Lagasca D, Liu D, Lewis RS, Mohney RP, Sepetov N, Sparkman DA, Hodge CN (2004) Streamlined system for purifying and quantifying a diverse library of compounds and the effect of compound concentration measurements on the accurate interpretation of biological assay results. Analytical Chemistry 76:7278–7287

    PubMed  CAS  Google Scholar 

  123. Jager S, Garbow N, Kirsch A, Preckel H, Gandenberger FU, Herrenknecht K, Rudiger M, Hutchinson JP, Bingham RP, Ramon F, Bardera A, Martin J (2003) A modular, fully integrated ultra-high-throughput screening system based on confocal fluorescence analysis techniques. J Biomol Screening 8:648–659

    Google Scholar 

  124. Fogel P, Collette P, Dupront A, Garyantes T, Guedini D (2002) The confirmation rate of primary hits: a predictive model. J Biomol Screening 7:175–190

    CAS  Google Scholar 

  125. Hubert CL, Sherling SE, Johnston PA, Stancato LF (2003) Data concordance from a comparison between filter binding and fluorescence polarization assay formats for identification of ROCK-II inhibitors. J Biomol Screening 8:399–409

    CAS  Google Scholar 

  126. Janzen WP, Hodge CN (2006) A chemogenonic approach to discovering target selective drugs. Chem Biol Drug Design 67:85–86

    CAS  Google Scholar 

  127. Kaiser J (2004) NIH gears up for chemical genomics. Science 304:1728

    PubMed  CAS  Google Scholar 

  128. http://mli.nih.gov/index.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Janzen, W.P. (2008). High Throughput Screening. In: Walker, J.M., Rapley, R. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-375-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-375-6_60

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-370-1

  • Online ISBN: 978-1-60327-375-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics