Skip to main content

Genome-Wide Association Study in Humans

  • Protocol
  • First Online:
Cardiovascular Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 573))

Abstract

Genome-wide association studies have opened a new era in the study of the genetic basis of common, multifactorial diseases and traits. Before the introduction of this approach only a handful of common genetic variants showed consistent association for any phenotype. Using genome-wide association, scores of novel and unsuspected loci have been discovered and later replicated for many complex traits. The principle is to genotype a dense set of common genetic variants across the genomes of individuals with phenotypic differences and examine whether genotype is associated with phenotype. Because the last common human ancestor was relatively recent and recombination events are concentrated in focal hotspots, most common variation in the human genome can be surveyed using a few hundred thousand variants acting as proxies for ungenotyped variants. Here, we describe the different steps of genome-wide association studies and use a recent study as example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Botstein, D, White, RL, Skolnick, M, et al. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331.

    PubMed  CAS  Google Scholar 

  2. Risch, N, Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273: 1516–1517.

    Article  PubMed  CAS  Google Scholar 

  3. Lander, ES. (1996) The new genomics: global views of biology. Science 274: 536–539.

    Article  PubMed  CAS  Google Scholar 

  4. Reich, DE, Cargill, M, Bolk, S, et al. (2001) Linkage disequilibrium in the human genome. Nature 411: 199–204.

    Article  PubMed  CAS  Google Scholar 

  5. McVean, GA, Myers, SR, Hunt, S, et al. (2004) The fine-scale structure of recombination rate variation in the human genome. Science 304: 581–584.

    Article  PubMed  CAS  Google Scholar 

  6. Frazer, KA, Ballinger, DG, Cox, DR, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

    Article  PubMed  CAS  Google Scholar 

  7. Lander, ES, Linton, LM, Birren, B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  PubMed  CAS  Google Scholar 

  8. Venter, JC, Adams, MD, Myers, EW, et al. (2001) The sequence of the human genome. Science 291: 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  9. Sachidanandam, R, Weissman, D, Schmidt, SC, et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928–933.

    Article  PubMed  CAS  Google Scholar 

  10. Perkel, J. (2008) SNP genotyping: six technologies that keyed a revolution. Nat Methods 5: 447–453.

    Article  CAS  Google Scholar 

  11. Altshuler, D, Brooks, LD, Chakravarti, A, et al. (2005) A haplotype map of the human genome. Nature 437: 1299–1320.

    Article  Google Scholar 

  12. Hirschhorn, JN, Lohmueller, K, Byrne, E, et al. (2002) A comprehensive review of genetic association studies. Genet Med 4: 45–61.

    Article  PubMed  CAS  Google Scholar 

  13. Lohmueller, KE, Pearce, CL, Pike, M, et al. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33: 177–182.

    Article  PubMed  CAS  Google Scholar 

  14. Chanock, SJ, Manolio, T, Boehnke, M, et al. (2007) Replicating genotype-phenotype associations. Nature 447: 655–660.

    Article  PubMed  CAS  Google Scholar 

  15. Saxena, R, Voight, BF, Lyssenko, V, et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  16. Clayton, D, Leung, HT. (2007) An R package for analysis of whole-genome association studies. Hum Hered 64: 45–51.

    Article  PubMed  CAS  Google Scholar 

  17. Abecasis, GR, Cardon, LR, Cookson, WO. (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66: 279–292.

    Article  PubMed  CAS  Google Scholar 

  18. Laird, NM, Horvath, S, Xu, X. (2000) Implementing a unified approach to family-based tests of association. Genet Epidemiol 19 Suppl 1: S36–S42.

    Article  PubMed  Google Scholar 

  19. Lange, C, DeMeo, D, Silverman, EK, et al. (2004) PBAT: tools for family-based association studies. Am J Hum Genet 74: 367–369.

    Article  PubMed  Google Scholar 

  20. Barrett, JC, Fry, B, Maller, J, et al. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

    Article  PubMed  CAS  Google Scholar 

  21. Price, AL, Patterson, NJ, Plenge, RM, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909.

    Article  PubMed  CAS  Google Scholar 

  22. Li, Y, Abecasis, GR. (2006) Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet S79: 2290.

    Article  PubMed  CAS  Google Scholar 

  23. The Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls Nature 447: 661–678.

    Article  Google Scholar 

  24. Ge, D, Zhang, K, Need, AC, et al. (2008) WGAViewer: software for genomic annotation of whole genome association studies. Genome Res 18: 640–643.

    Article  PubMed  CAS  Google Scholar 

  25. Patterson, N, Hattangadi, N, Lane, B, et al. (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74: 979–1000.

    Article  PubMed  CAS  Google Scholar 

  26. Purcell, S, Cherny, SS, Sham, PC. (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19: 149–150.

    Article  PubMed  CAS  Google Scholar 

  27. Skol, AD, Scott, LJ, Abecasis, GR, et al. (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38: 209–213.

    Article  PubMed  CAS  Google Scholar 

  28. Visscher, PM, Hill, WG, Wray, NR. (2008) Heritability in the genomics era–concepts and misconceptions. Nat Rev Genet 9: 255–266.

    Article  PubMed  CAS  Google Scholar 

  29. Cupples, LA, Arruda, HT, Benjamin, EJ, et al. (2007) The Framingham Heart Study 100 K SNP genome-wide association study resource: overview of 17 phenotype working group reports BMC. Med Genet 8 Suppl 1: S1–S4.

    Article  Google Scholar 

  30. Mitchell, AA, Cutler, DJ, Chakravarti, A. (2003) Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. Am J Hum Genet 72: 598–610.

    Article  PubMed  CAS  Google Scholar 

  31. Zondervan, KT, Cardon, LR. (2007) Designing candidate gene and genome-wide case-control association studies. Nat Protoc 2: 2492–2501.

    Article  PubMed  CAS  Google Scholar 

  32. de Bakker, PI, Yelensky, R, Pe'er, I, et al. (2005) Efficiency and power in genetic association studies. Nat Genet 37: 1217–1223.

    Article  PubMed  CAS  Google Scholar 

  33. Pe'er, I, de Bakker, PI, Maller, J, et al. (2006) Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 38: 663–667.

    Article  PubMed  Google Scholar 

  34. Barrett, JC, Cardon, LR. (2006) Evaluating coverage of genome-wide association studies. Nat Genet 38: 659–662.

    Article  PubMed  CAS  Google Scholar 

  35. Bhangale, TR, Rieder, MJ, Nickerson, DA. (2008) Estimating coverage and power for genetic association studies using near-complete variation data. Nat Genet 40: 841–843.

    Article  PubMed  CAS  Google Scholar 

  36. Rabbee, N, Speed, TP. (2006) A genotype calling algorithm for Affymetrix SNP arrays. Bioinformatics 22: 7–12.

    Article  PubMed  CAS  Google Scholar 

  37. Wittke-Thompson, JK, Pluzhnikov, A, Cox, NJ. (2005) Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76: 967–986.

    Article  PubMed  CAS  Google Scholar 

  38. Cox, DG, Kraft, P. (2006) Quantification of the power of Hardy-Weinberg equilibrium testing to detect genotyping error. Hum Hered 61: 10–14.

    Article  PubMed  Google Scholar 

  39. Clayton, DG, Walker, NM, Smyth, DJ, et al. (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37: 1243–1246.

    Article  PubMed  CAS  Google Scholar 

  40. Campbell, CD, Ogburn, EL, Lunetta, KL, et al. (2005) Demonstrating stratification in a European American population. Nat Genet 37: 868–872.

    Article  PubMed  CAS  Google Scholar 

  41. Devlin, B, Roeder, K. (1999) Genomic control for association studies. Biometrics 55: 997–1004.

    Article  PubMed  CAS  Google Scholar 

  42. Zheng, G, Freidlin, B, Gastwirth, JL. (2006) Robust genomic control for association studies. Am J Hum Genet 78: 350–6.

    Article  PubMed  CAS  Google Scholar 

  43. Pritchard, JK, Stephens, M, Rosenberg, NA, et al. (2000) Association mapping in structured populations. Am J Hum Genet 67: 170–181.

    Article  PubMed  CAS  Google Scholar 

  44. Purcell, S, Neale, B, Todd-Brown, K, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.

    Article  PubMed  CAS  Google Scholar 

  45. Zeggini, E, Weedon, MN, Lindgren, CM, et al. (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336–1341.

    Article  PubMed  CAS  Google Scholar 

  46. Scott, LJ, Mohlke, KL, Bonnycastle, LL, et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341–1345.

    Article  PubMed  CAS  Google Scholar 

  47. Lasky-Su, J, Lyon, HN, Emilsson, V, et al. (2008) On the replication of genetic associations: timing can be everything! Am J Hum Genet 82: 849–858.

    Article  PubMed  CAS  Google Scholar 

  48. Balding, DJ. (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7: 781–791.

    Article  PubMed  CAS  Google Scholar 

  49. Liang, KY, Zeger, SL. (1986) Longitudinal data analysis using generalized estimating linear models. Biometrika 73: 12–22.

    Article  Google Scholar 

  50. Pilia, G, Chen, WM, Scuteri, A, et al. (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2: e132.

    Article  PubMed  Google Scholar 

  51. Lowe, JK, Maller, JB, Pe'er l, et al. (2009) PLoS Genet 5: e1000365.

    Google Scholar 

  52. Smith, JG, Lowe, JK, Kovvali, S, et al. (2009) Heart Rhythm 6: 634–641.

    Google Scholar 

  53. Wacholder, S, Chanock, S, Garcia-Closas, M, et al. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96: 434–442.

    Article  PubMed  Google Scholar 

  54. Dudbridge, F, Gusnanto, A. (2008) Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 32: 227–234.

    Article  PubMed  Google Scholar 

  55. Pe'er, I, Yelensky, R, Altshuler, D, et al. (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32: 381–385.

    Article  PubMed  Google Scholar 

  56. Lander, E, Kruglyak, L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11: 241–247.

    Article  PubMed  CAS  Google Scholar 

  57. Kazeem, GR, Farrall, M. (2005) Integrating case-control and TDT studies. Ann Hum Genet 69: 329–335.

    Article  PubMed  CAS  Google Scholar 

  58. Higgins, JP, Thompson, SG, Deeks, JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.

    Article  PubMed  Google Scholar 

  59. Willer, CJ, Sanna, S, Jackson, AU, et al. (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40: 161–169.

    Article  PubMed  CAS  Google Scholar 

  60. Kathiresan, S, Melander, O, Guiducci, C, et al. (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40: 189–197.

    Article  PubMed  CAS  Google Scholar 

  61. Anderson, CA, Pettersson, FH, Barrett, JC, et al. (2008) Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms. Am J Hum Genet 83: 112–119.

    Article  PubMed  CAS  Google Scholar 

  62. McCarthy, MI, Abecasis, GR, Cardon, LR, et al. (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9: 356–369.

    Article  PubMed  CAS  Google Scholar 

  63. Lander, ES, Green, P, Abrahamson, J, et al. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  64. Reich, D, Patterson, N, De Jager, PL, et al. (2005) A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 37: 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  65. Altmuller, J, Palmer, LJ, Fischer, G, et al. (2001) Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 69: 936–950.

    Article  PubMed  CAS  Google Scholar 

  66. Altshuler, D, Daly, M. (2007) Guilt beyond a reasonable doubt. Nat Genet 39: 813–815.

    Article  PubMed  CAS  Google Scholar 

  67. Benjamini, Y, Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57: 289–300.

    Google Scholar 

  68. Birney, E, Stamatoyannopoulos, JA, Dutta, A, et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799–816.

    Article  PubMed  CAS  Google Scholar 

  69. Dixon, AL, Liang, L, Moffatt, MF, et al. (2007) A genome-wide association study of global gene expression. Nat Genet 39: 1202–1207.

    Article  PubMed  CAS  Google Scholar 

  70. Stranger, BE, Nica, AC, Forrest, MS, et al. (2007) Population genomics of human gene expression. Nat Genet 39: 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  71. Kwan, T, Benovoy, D, Dias, C, et al. (2008) Genome-wide analysis of transcript isoform variation in humans. Nat Genet 40: 225–231.

    Article  PubMed  CAS  Google Scholar 

  72. McCarroll, SA, Altshuler, DM. (2007) Copy-number variation and association studies of human disease. Nat Genet 39: S37–S42.

    Article  PubMed  Google Scholar 

  73. Hirschhorn, JN, Daly, MJ. (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6: 95–108.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, WY, Barratt, BJ, Clayton, DG, et al. (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6: 109–118.

    Article  PubMed  CAS  Google Scholar 

  75. Pearson, TA, Manolio, TA. (2008) How to interpret a genome-wide association study. JAMA 299: 1335–1344.

    Article  PubMed  CAS  Google Scholar 

  76. Kruglyak, L. (2008) The road to genome-wide association studies. Nat Rev Genet 9: 314–318.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smith, J.G., Newton-Cheh, C. (2009). Genome-Wide Association Study in Humans. In: DiPetrillo, K. (eds) Cardiovascular Genomics. Methods in Molecular Biology™, vol 573. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-247-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-247-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-246-9

  • Online ISBN: 978-1-60761-247-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics