Abstract
For every α > 0 and a local integrable function f(t), the right FI of order α is defined:
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
G.F.B. Riemann (1826–1866).
- 2.
J. Liouville (1809–1882).
- 3.
J.P.G.L. Dirichlet (1805–1859).
- 4.
A.L. Cauchy (1789–1857).
- 5.
M. Caputo (1967–).
- 6.
B. Taylor (1685–1731).
References
Caputo, M. (1999). Lessons on seismology and rheological tectonics. Technical report, Universitá degli Studi La Sapienza, Rome.
Ishteva, M., Scherer, R., & Boyadjiev, L. (2003). On the Caputo operator of fractional calculus and C-Laguerre functions. Technical report, Bulgarian Ministry of Education and Science, Grant MM 1305/2003.
Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: John Wiley & Sons.
Valério, D., & Costa, J. S. (2013). An introduction to fractional control. London: CRC Press.
Podlubny, I. (1998). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering. San Diego: Academic Press.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Milici, C., Drăgănescu, G., Tenreiro Machado, J. (2019). Fractional Derivative and Fractional Integral. In: Introduction to Fractional Differential Equations. Nonlinear Systems and Complexity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-00895-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-00895-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00894-9
Online ISBN: 978-3-030-00895-6
eBook Packages: EngineeringEngineering (R0)