Skip to main content

Fractional Derivative and Fractional Integral

  • Chapter
  • First Online:
Introduction to Fractional Differential Equations

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 25))

  • 1577 Accesses

Abstract

For every α > 0 and a local integrable function f(t), the right FI of order α is defined:

$$\displaystyle{ }_aI_t^\alpha f(t) = \displaystyle\frac {1}{\Gamma (\alpha )}\displaystyle\int _a^t(t - u)^{\alpha - 1}f(u)du,\qquad-\infty \le a < t < \infty .$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    G.F.B. Riemann (1826–1866).

  2. 2.

    J. Liouville (1809–1882).

  3. 3.

    J.P.G.L. Dirichlet (1805–1859).

  4. 4.

    A.L. Cauchy (1789–1857).

  5. 5.

    M. Caputo (1967–).

  6. 6.

    B. Taylor (1685–1731).

References

  1. Caputo, M. (1999). Lessons on seismology and rheological tectonics. Technical report, Universitá degli Studi La Sapienza, Rome.

    Google Scholar 

  2. Ishteva, M., Scherer, R., & Boyadjiev, L. (2003). On the Caputo operator of fractional calculus and C-Laguerre functions. Technical report, Bulgarian Ministry of Education and Science, Grant MM 1305/2003.

    Google Scholar 

  3. Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: John Wiley & Sons.

    MATH  Google Scholar 

  4. Valério, D., & Costa, J. S. (2013). An introduction to fractional control. London: CRC Press.

    MATH  Google Scholar 

  5. Podlubny, I. (1998). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering. San Diego: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milici, C., Drăgănescu, G., Tenreiro Machado, J. (2019). Fractional Derivative and Fractional Integral. In: Introduction to Fractional Differential Equations. Nonlinear Systems and Complexity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-00895-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00895-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00894-9

  • Online ISBN: 978-3-030-00895-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics