Skip to main content

Pericytes in the Umbilical Cord

  • Chapter
  • First Online:
Pericyte Biology in Different Organs

Abstract

The structural components of the umbilical cord, including two arteries and one vein, the stromal region/Wharton’s jelly, and amniotic epithelial membrane, are well described at various time points of gestation. Over the last two decades, evidence has emerged that multipotent cells sharing properties of mesenchymal stromal cell and pericytes/mural cells can be isolated from multiple regions of the umbilical cord, including the perivascular region of the umbilical cord arteries and vein, Wharton’s jelly, and subamnion. These cells have increasingly gained interest for their potential use in regenerative and immunomodulatory medicine. Recent studies suggest that obstetrical complications including gestational diabetes mellitus and preeclampsia may alter the yield, properties, and potency of mesenchymal stromal cells isolated from the umbilical cord. The role that pericytes or pericyte-like cells play in the development of the human umbilical cord and associated pathologies, however, remains to be investigated.

Part of “Biology of Pericytes: Development, Homeostasis and Disease”, a forthcoming volume which will be in the Springer Nature series “Advances in Experimental Medicine and Biology (ISSN:0065-2598)”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An B, Kim E, Song H, Ha KS, Han ET, Park WS, Ahn TG, Yang SR, Na S, Hong SH (2017) Gestational diabetes affects the growth and functions of perivascular stem cells. Mol Cells 40(6):434–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeva ER, Pugach IM, Gordon D, Orekhov AN (1998) Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 30(1):127–135

    Article  CAS  PubMed  Google Scholar 

  • Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Bankowski E, Sobolewski K, Romanowicz L, Chyczewski L, Jaworski S (1996) Collagen and glycosaminoglycans of Wharton's jelly and their alterations in EPH-gestosis. Eur J Obstet Gynecol Reprod Biol 66(2):109–117

    Article  CAS  PubMed  Google Scholar 

  • Bankowski E, Sobolewski K, Palka J, Jaworski S (2004) Decreased expression of the insulin-like growth factor-I-binding protein-1 (IGFBP-1) phosphoisoform in pre-eclamptic Wharton's jelly and its role in the regulation of collagen biosynthesis. Clin Chem Lab Med 42(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Benirschke K, Kaufmann P (1995) Pathology of the human placenta. Springer, New York

    Book  Google Scholar 

  • Blanco MV, Vega HR, Giuliano R, Grana DR, Azzato F, Lerman J, Milei J (2011) Histomorphometry of umbilical cord blood vessels in preeclampsia. J Clin Hypertens (Greenwich) 13(1):30–34

    Article  Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229−230

    Google Scholar 

  • Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25(11):2886–2895

    Article  PubMed  Google Scholar 

  • Can A, Celikkan FT, Cinar O (2017) Umbilical cord mesenchymal stromal cell transplantations: a systemic analysis of clinical trials. Cytotherapy 19(12):1351–1382

    Article  PubMed  Google Scholar 

  • Clarke JA (1965) An x-ray microscopic study of the human umbilical arteries. Z Zellforsch Mikrosk Anat 66(2):293–299

    Article  CAS  PubMed  Google Scholar 

  • Cole J, Israfil-Bayli F (2016) Wharton's jelly: the significance of absence. J Obstet Gynaecol 36(4):500–501

    Article  PubMed  Google Scholar 

  • Corrao S, La Rocca G, Lo Iacono M, Corsello T, Farina F, Anzalone R (2013) Umbilical cord revisited: from Wharton's jelly myofibroblasts to mesenchymal stem cells. Histol Histopathol 28(10):1235–1244

    PubMed  Google Scholar 

  • Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Coskun H, Can A (2015) The assessment of the in vivo to in vitro cellular transition of human umbilical cord multipotent stromal cells. Placenta 36(2):232–239

    Article  CAS  PubMed  Google Scholar 

  • Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36(5):642–654

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  • Cullen, T. S. (1916). Embryology, anatomy, and diseases of the umbilicus, together with the diseases of the urachus. Philadelphia Saunders

    Book  Google Scholar 

  • Davies JE, Walker JT, Keating A (2017) Concise review: Wharton's jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6(7):1620–1630

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969

    CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Downs KM (1998) The murine allantois. Curr Top Dev Biol 39:1–33

    Article  CAS  PubMed  Google Scholar 

  • Downs KM, Gifford S, Blahnik M, Gardner RL (1998) Vascularization in the murine allantois occurs by vasculogenesis without accompanying erythropoiesis. Development 125(22):4507–4520

    CAS  PubMed  Google Scholar 

  • Ellison JP (1971) The nerves of the umbilical cord in man and the rat. Am J Anat 132(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  PubMed  Google Scholar 

  • Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H (2007) Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 13(12):1477–1486

    Article  PubMed  Google Scholar 

  • Guadix JA, Zugaza JL, Galvez-Martin P (2017) Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin (Barc) 148(9):408–414

    Article  Google Scholar 

  • Holm A et al (2018) Microvascular mural cell Organotypic heterogeneity and functional plasticity. Trends Cell Biol 28(4):302–316

    Article  PubMed  Google Scholar 

  • Hong SH, Maghen L, Kenigsberg S, Teichert AM, Rammeloo AW, Shlush E, Szaraz P, Pereira S, Lulat A, Xiao R, Yie SM, Gauthier-Fisher A, Librach CL (2013) Ontogeny of human umbilical cord perivascular cells: molecular and fate potential changes during gestation. Stem Cells Dev 22(17):2425–2439

    Article  CAS  PubMed  Google Scholar 

  • Hoyes AD (1969) Ultrastructure of the epithelium of the human umbilical cord. J Anat 105(Pt 1):149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inman KE, Downs KM (2007) The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 45(5):237–258

    Article  CAS  PubMed  Google Scholar 

  • Iqbal F, Szaraz P, Librach M, Gauthier-Fisher A, Librach CL (2017) Angiogenic potency evaluation of cell therapy candidates by a novel application of the in vitro aortic ring assay. Stem Cell Res Ther 8(1):184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90(2):261–269

    Article  PubMed  Google Scholar 

  • Joerger-Messerli M, Bruhlmann E, Bessire A, Wagner A, Mueller M, Surbek DV, Schoeberlein A (2015) Preeclampsia enhances neuroglial marker expression in umbilical cord Wharton’s jelly-derived mesenchymal stem cells. J Matern Fetal Neonatal Med 28(4):464–469

    Article  CAS  PubMed  Google Scholar 

  • Junek T, Baum O, Lauter H, Vetter K, Matejevic D, Graf R (2000) Pre-eclampsia associated alterations of the elastic fibre system in umbilical cord vessels. Anat Embryol (Berl) 201(4):291–303

    Article  CAS  Google Scholar 

  • Jurewicz E, Kasacka I, Bankowski E, Filipek A (2014) S100A6 and its extracellular targets in Wharton's jelly of healthy and preeclamptic patients. Placenta 35(6):386–391

    Article  CAS  PubMed  Google Scholar 

  • Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331

    Article  CAS  PubMed  Google Scholar 

  • Khati NJ, Enquist EG, Javitt MC (1998) Imaging of the umbilicus and periumbilical region. Radiographics 18(2):413–431

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS, Jun EJ, Shim JY, Choi J, Kim CJ (2015) Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 24(5):575–586

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni ML, Matadh PS, Ashok C, Pradeep N, Avinash T, Kulkarni AM (2007) Absence of Wharton’s jelly around the umbilical arteries. Indian J Pediatr 74(8):787–789

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH (2016) MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 18(12):1493–1502

    Article  CAS  PubMed  Google Scholar 

  • Loibl M, Binder A, Herrmann M, Duttenhoefer F, Richards RG, Nerlich M, Alini M, Verrier S (2014) Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. Biomed Res Int 2014:395781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malas MA, Sulak O, Gokcimen A, Sari A (2003) Morphology of umbilical vessels in human fetuses: a quantitative light microscopy study. Eur J Morphol 41(5):167–174

    CAS  PubMed  Google Scholar 

  • Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M (2015) High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARalpha and PPARbeta/delta. Cell Tissue Res 361(2):593–604

    Article  CAS  PubMed  Google Scholar 

  • McElreavey KD, Irvine AI, Ennis KT, McLean WH (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19(1):29S

    Article  CAS  PubMed  Google Scholar 

  • Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427

    Article  PubMed  CAS  Google Scholar 

  • Montemurro T, Andriolo G, Montelatici E, Weissmann G, Crisan M, Colnaghi MR, Rebulla P, Mosca F, Peault B, Lazzari L (2011) Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. J Cell Mol Med 15(4):796–808

    Article  CAS  PubMed  Google Scholar 

  • Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P (1997) Stromal differentiation and architecture of the human umbilical cord. Placenta 18(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Parry EW (1970) Some electron microscope observations on the mesenchymal structures of full-term umbilical cord. J Anat 107(Pt 3):505–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parry EW, Abramovich DR (1970) Some observations on the surface layer of full-term human umbilical cord epithelium. J Obstet Gynaecol Br Commonw 77(10):878–884

    Article  CAS  PubMed  Google Scholar 

  • Parry EW, Abramovich DR (1972) The ultrastructure of human umbilical vessel endothelium from early pregnancy to full term. J Anat 111(Pt 1):29–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson AA, Sauter RW (1970) Nerve contributions to the pelvic plexus and the umbilical cord. Am J Anat 128(4):485–498

    Article  CAS  PubMed  Google Scholar 

  • Ryu YJ, Seol HS, Cho TJ, Kwon TJ, Jang SJ, Cho J (2013) Comparison of the ultrastructural and immunophenotypic characteristics of human umbilical cord-derived mesenchymal stromal cells and in situ cells in Wharton's jelly. Ultrastruct Pathol 37(3):196–203

    Article  PubMed  Google Scholar 

  • Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 6(12):2173–2185

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229

    Article  PubMed  Google Scholar 

  • Sarugaser R, Ennis J, Stanford WL, Davies JE (2009) Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods Mol Biol 482:269–279

    Article  CAS  PubMed  Google Scholar 

  • Schugar RC, Chirieleison SM, Wescoe KE, Schmidt BT, Askew Y, Nance JJ, Evron JM, Peault B, Deasy BM (2009) High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol 2009:789526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seano G, Chiaverina G, Gagliardi PA, di Blasio L, Sessa R, Bussolino F, Primo L (2013) Modeling human tumor angiogenesis in a three-dimensional culture system. Blood 121(21):e129–e137

    Article  CAS  PubMed  Google Scholar 

  • Sexton AJ, Turmaine M, Cai WQ, Burnstock G (1996) A study of the ultrastructure of developing human umbilical vessels. J Anat 188(Pt 1):75–85

    PubMed  PubMed Central  Google Scholar 

  • Sheppard BL, Bishop AJ (1973) Electron microscopical observations on sheep umbilical vessels. Q J Exp Physiol Cogn Med Sci 58(1):39–45

    CAS  PubMed  Google Scholar 

  • Shende P, Gupta H, Gaud RS (2018) Cytotherapy using stromal cells: current and advance multi-treatment approaches. Biomed Pharmacother 97:38–44

    Article  PubMed  Google Scholar 

  • Shlush E, Maghen L, Swanson S, Kenigsberg S, Moskovtsev S, Barretto T, Gauthier-Fisher A, Librach CL (2017) In vitro generation of Sertoli-like and haploid spermatid-like cells from human umbilical cord perivascular cells. Stem Cell Res Ther 8(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27(10):842–846

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Rao S, Sobti P, Khurana N (2012) Multiple vessels in the umbilical cord: a report of four cases. Indian J Pathol Microbiol 55(4):597–598

    Article  PubMed  Google Scholar 

  • Spurway J, Logan P, Pak S (2012) The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australas J Ultrasound Med 15(3):97–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Stehbens WE, Wakefield JS, Gilbert-Barness E, Zuccollo JM (2005) Histopathology and ultrastructure of human umbilical blood vessels. Fetal Pediatr Pathol 24(6):297–315

    Article  PubMed  Google Scholar 

  • Subramanian A, Fong CY, Biswas A, Bongso A (2015) Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton's jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10(6):e0127992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szaraz P, Librach M, Maghen L, Iqbal F, Barretto TA, Kenigsberg S, Gauthier-Fisher A, Librach CL (2016) In vitro differentiation of first trimester human umbilical cord perivascular cells into contracting cardiomyocyte-like cells. Stem Cells Int 2016:7513252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takechi K, Kuwabara Y, Mizuno M (1993) Ultrastructural and immunohistochemical studies of Wharton's jelly umbilical cord cells. Placenta 14(2):235–245

    Article  CAS  PubMed  Google Scholar 

  • Wajid N, Naseem R, Anwar SS, Awan SJ, Ali M, Javed S, Ali F (2015) The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell Tissue Bank 16(3):389–397

    Article  CAS  PubMed  Google Scholar 

  • Wetzig A, Alaiya A, Al-Alwan M, Pradez CB, Pulicat MS, Al-Mazrou A, Shinwari Z, Sleiman GM, Ghebeh H, Al-Humaidan H, Gaafar A, Kanaan I, Adra C (2013) Differential marker expression by cultures rich in mesenchymal stem cells. BMC Cell Biol 14:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang HT, Chao KC (2013) Foetal defence against cancer: a hypothesis. J Cell Mol Med 17(9):1096–1098

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Farwah Iqbal (Librach lab) for providing unpublished data included in Fig. 12.5 and Denis Gallagher (CReATe Fertility Centre) for his careful review and edits of the manuscript. The authors would like to acknowledge the authors of previously published books and scientific articles for contributions to figures. Some images found in Figs. 12.2, 12.3, and 12.6 were obtained with permission as described in figure legends.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrée Gauthier-Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gauthier-Fisher, A., Szaraz, P., Librach, C.L. (2019). Pericytes in the Umbilical Cord. In: Birbrair, A. (eds) Pericyte Biology in Different Organs. Advances in Experimental Medicine and Biology, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-11093-2_12

Download citation

Publish with us

Policies and ethics