Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

  • 6570 Accesses

Abstract

Estimating dimensional measurements of the left ventricle provides diagnostic values which can be used to assess cardiac health and identify certain pathologies. In this paper we describe our methodology of calculating measurements from left ventricle segmentations automatically generated using deep learning. We use a U-net convolutional neural network architecture built from residual units to segment the left ventricle and then process these segmentations to estimate the area of the cavity and myocardium, the dimensions of the cavity, and the thickness of the myocardium. Determining if an image is part of the diastolic or systolic portion of the cardiac cycle is done by analysing the cavity volume. The quality of our results are dependent on our training regime where we have generated a large derivative dataset by augmenting the original images with free-form deformations. Our expanded training set, in conjunction with simple affine image transforms, creates a sufficiently large training population to prevent over-fitting of the network while still creating an accurate and robust segmentation network. Assessing our method on the STACOM18 LVQuan challenge dataset we find that it significantly outperforms the previously published state-of-the-art on a 5-fold validation all tasks considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avendi, M., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  2. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20, 65 (2018)

    Article  Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imageNet classification. CoRR abs/arXiv:1502.0185 (2015)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. CoRR abs/1603.05027 (2016)

    Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., USA (2012)

    Google Scholar 

  6. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)

    Article  Google Scholar 

  7. Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 155–195 (2016)

    Article  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015)

    Google Scholar 

  9. Simard, P.Y., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. Institute of Electrical and Electronics Engineers, Inc. August 2003

    Google Scholar 

  10. Suinesiaputra, A., et al.: Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J. Cardiovasc. Magn. Reson. 17(1), 63 (2015)

    Article  Google Scholar 

  11. Tan, L.K., Liew, Y.M., Lim, E., McLaughlin, R.A.: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. Med. Image Anal. 39, 78–86 (2017)

    Article  Google Scholar 

  12. Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494 (2016)

  13. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: The missing ingredient for fast stylization. CoRR abs/1607.08022 (2016). http://arxiv.org/abs/1607.08022

  14. Wang, Z., Salah, M.B., Gu, B., Islam, A., Goela, A., Li, S.: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans. Biomed. Eng. 61(4), 1251–1260 (2014)

    Article  Google Scholar 

  15. Xue, W., Brahm, G., Pandey, S., Leung, S., Li, S.: Full left ventricle quantification via deep multitask relationships learning. Med. Image Anal. 43, 54–65 (2018)

    Article  Google Scholar 

  16. Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE Trans. Med. Imaging 36(10), 2057–2067 (2017)

    Article  Google Scholar 

  17. Xue, W., Nachum, I.B., Pandey, S., Warrington, J., Leung, S., Li, S.: Direct estimation of regional wall thicknesses via residual recurrent neural network. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 505–516. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_40

    Chapter  Google Scholar 

  18. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. CoRR abs/1711.10684 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by an EPSRC programme Grant (EP/P001009/1) and the Wellcome EPSRC Centre for Medical Engineering at the School of Biomedical Engineering and Imaging Sciences, King’s College London (WT 203148/Z/16/Z). The GPUs used in this research was generously donated by the NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkay Oksuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A. (2019). Left-Ventricle Quantification Using Residual U-Net. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics